【題目】如圖,已知:在直角梯形ABCD中,ADBC,C=90°,AB=AD=25,BC=32,連接BD,AEBD,垂足為E.

(1)求證:ABE∽△DBC;

(2)求線段AE的長(zhǎng).

【答案】1)證明見解析;(215.

【解析】試題分析:(1)由等腰三角形的性質(zhì)可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可證△ABE∽△DBC;

2)由等腰三角形的性質(zhì)可知,BD=2BE,根據(jù)△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE

1)證明:∵AB=AD=25,

∴∠ABD=∠ADB,

∵AD∥BC

∴∠ADB=∠DBC,

∴∠ABD=∠DBC,

∵AE⊥BD,

∴∠AEB=∠C=90°,

∴△ABE∽△DBC;

2)解:∵AB=AD,又AE⊥BD

∴BE=DE,

∴BD=2BE,

△ABE∽△DBC,

,

∵AB=AD=25,BC=32,

∴BE=20,

∴AE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市數(shù)學(xué)調(diào)研小組對(duì)老師在講評(píng)試卷中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為“主動(dòng)質(zhì)疑”、“獨(dú)立思考”、“專注聽講”、“講解題目”四項(xiàng),該調(diào)研小組隨機(jī)抽取了若干名初中七年級(jí)學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息答下列問題:

1)在這次評(píng)價(jià)中,一共抽查了  名學(xué)生;

2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

3)如果全市有4000名七年級(jí)學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的七年級(jí)學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,ABC是格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都是小正方形的頂點(diǎn)).

1)在第一象限內(nèi)找一點(diǎn)P,以格點(diǎn)PA、B為頂點(diǎn)的三角形與ABC相似但不全等,請(qǐng)寫出符合條件格點(diǎn)P的坐標(biāo);

2)請(qǐng)用直尺與圓規(guī)在第一象限內(nèi)找到兩個(gè)點(diǎn)M、N,使∠AMB=ANB=ACB.請(qǐng)保留作圖痕跡,不要求寫畫法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)將下列證明過程補(bǔ)充完整:

已知:如圖,AE平分∠BACCE平分∠ACD,且∠α+∠β90°.

求證:ABCD.

證明:∵CE平分∠ACD (已知),

∴∠ACD2α(______________________)

AE平分∠BAC (已知),

∴∠BAC_________(______________________)

∵∠α+∠β90°(已知),

2α2β180°(等式的性質(zhì))

∴∠ACD+∠BAC==_________(______________________)

ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 中,AB=AC,AB 的垂直平分線交 AB 于點(diǎn) D,交 CA 的延長(zhǎng)線于點(diǎn) E,EBC=42°,則 BAC=( )

A. 159° B. 154° C. 152° D. 138°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)A13).

1)試確定此反比例函數(shù)的解析式;

2)當(dāng)=2時(shí), y的值;

3)當(dāng)自變量5增大到8時(shí),函數(shù)值y是怎樣變化的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價(jià)30張,暑假為了促銷,新推出一種優(yōu)惠卡:售價(jià)300張,每次憑卡另收15暑假普通票正常出售,優(yōu)惠卡僅限暑假使用,不限次數(shù)設(shè)游泳x次時(shí),所需總費(fèi)用為y元.

分別寫出選擇優(yōu)惠卡、普通票消費(fèi)時(shí),yx之間的函數(shù)關(guān)系式;

在同一坐標(biāo)系中,若兩種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC=∠ACD90°,∠ABC=∠ADC,CEAD,且BE平分∠ABC,則下列結(jié)論:①ADBC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是(

A. ①②B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

查看答案和解析>>

同步練習(xí)冊(cè)答案