【題目】已知關于x的方程 x2﹣(2k+1)x+4(k﹣)=0.若等腰三角形ABC的一邊長a=4,另兩邊邊長b、c恰好是這個方程的兩個實數(shù)根,則△ABC的周長為_____.
【答案】10
【解析】
分a為腰長以及底邊長兩種情況考慮.①等a為腰長時,將x=4代入原方程可求出k值,將k值代入原方程解方程可得出底邊長,再利用三角形的三邊關系驗證后可得出結論;②當a為底邊長時,根據(jù)根的判別式△=0即可求出k值,將k值代入原方程解方程可得出腰長,再利用三角形的三邊關系驗證后即可得出結論.綜上即可得出結論.
解:①當a為腰長時,將x=4代入x2﹣(2k+1)x+4(k﹣)=0中得:10﹣4k=0,
解得:k=,
∴原方程為x2﹣6x+8=0,
解得:x1=4,x2=2,
∵4,4,2滿足任意兩邊之和大于第三邊,
∴C=4+4+2=10;
②當a為底邊長時,方程 x2﹣(2k+1)x+4(k﹣)=0有兩個相等的實數(shù)根,
∴△=[﹣(2k+1)]2﹣4×1×4(k﹣)=4k2﹣12k+9=0,
解得:k=.
當k=時,原方程為x2﹣4x+4=0,
解得:x=2,
∵2,2,4不滿足任意兩邊之和大于第三邊,
∴a為底邊長不符合題意.
綜上可知:△ABC的周長為10.
故答案為:10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊OA在x軸上,將平行四邊形沿對角線AC對折,AO的對應線段為AD,且點D,C,O在同一條直線上,AD與BC交于點E.
(1)求證:△ABC≌△CDA.
(2)若直線AB的函數(shù)表達式為,求三角線ACE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以直角的斜邊AB,直角邊AC為邊向外作等邊和等邊,F為AB的中點,DE與AB交于點G,EF與AC交于點H,,.給出如下結論:
①EF⊥AC; ②四邊形ADFE為菱形; ③; ④;
其中正確結論的是( )
A. ①②③B. ②③④C. ①③④D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-x+4與x軸、y軸分別交于點A,點B、點D在y軸的負半軸上,若將△OAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處。
(1)求AB的長。
(2)求點C和點D的坐標。
(3)y軸上是否存在一點P,S△PAB= S△OCD?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=20°,A、B分別為射線OM、ON上兩定點,且OA=2,OB=4,點P、Q分別為射線OM、ON兩動點,當P、Q運動時,線段AQ+PQ+PB的最小值是( 。
A.3B.C.2D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某新型高科技商品,每件的售價比進價多6元,5件的進價相當于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進價分別是多少元?
(2)設每天的銷售利潤為w元,每件商品漲價x元,則當售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當△EFC為直角三角形時BE=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com