反比例函數(shù)y=的圖象位于平面直角坐標(biāo)系的( 。
A. 第一、三象限 B. 第二、四象限 C. 第一、二象限 D. 第三、四象限
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)O出發(fā),向點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)問(wèn):當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過(guò)點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過(guò)點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo);
(4)設(shè)拋物線頂點(diǎn)為M,連接BP,BM,MQ,問(wèn):是否存在t的值,使以B,Q,M為頂點(diǎn)的三角形與以O(shè),B,P為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)①找出圖1中的一對(duì)全等三角形并說(shuō)明理由;
②寫出圖1中線段DE、AD、BE滿足的數(shù)量關(guān)系;(不必說(shuō)明理由)
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí), 探究線段DE、AD、BE之間的數(shù)量關(guān)系并說(shuō)明理由;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),問(wèn)DE、AD、BE之間又具有怎樣的數(shù)量關(guān)系?直接寫出這個(gè)數(shù)量關(guān)系(不必說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,點(diǎn)E是▱ABCD的邊AD的中點(diǎn),連接CE交BD于點(diǎn)F,如果S△DEF=a,那么S△BCF= .
11.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為了豐富學(xué)生的體育生活,學(xué)校準(zhǔn)備購(gòu)進(jìn)一些籃球和足球,已知用900元購(gòu)買籃球的個(gè)數(shù)比購(gòu)買足球的個(gè)數(shù)少1個(gè),足球的單價(jià)為籃球單價(jià)的0.9倍.
(1)求籃球、足球的單價(jià)分別為多少元?
(2)如果計(jì)劃用5000元購(gòu)買籃球、足球共52個(gè),那么至少要購(gòu)買多少個(gè)足球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com