【題目】如圖,已知正方形ABCD的邊長(zhǎng)是4,點(diǎn)EAB邊上一動(dòng)點(diǎn),連接CE,過(guò)點(diǎn)BBGCE于點(diǎn)G,點(diǎn)PAB邊上另一動(dòng)點(diǎn),則PD+PG的最小值是(

A. B. C. D.

【答案】C

【解析】

DC關(guān)于AB的對(duì)稱點(diǎn)D′C′,以BC中的O為圓心作半圓O,連D′O分別交AB及半圓OP、G.將PD+PG轉(zhuǎn)化為D′G找到最小值.

解:如圖:

取點(diǎn)D關(guān)于直線AB的對(duì)稱點(diǎn)D′.以BC中點(diǎn)O為圓心,OB為半徑畫半圓.
連接OD′AB于點(diǎn)P,交半圓O于點(diǎn)G,連BG.連CG并延長(zhǎng)交AB于點(diǎn)E
由以上作圖可知,BGECG
PD+PG=PD′+PG=D′G
由兩點(diǎn)之間線段最短可知,當(dāng)點(diǎn)D′G,O三點(diǎn)共線時(shí),PD+PG最小.
D′C′=4,OC′=6
D′O=
D′G=22
PD+PG的最小值為22
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)男生的體能情況,體育老師從中隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問(wèn)題:

(1)本次抽測(cè)的男生有________人,抽測(cè)成績(jī)的眾數(shù)是_________;

(2)請(qǐng)將條形圖補(bǔ)充完整;

(3)若規(guī)定引體向上6次以上(含6次)為體能達(dá)標(biāo),則該校125名九年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)(ab,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2 ,0)(3 0)之間,對(duì)稱軸是x=1.對(duì)于下列結(jié)論:① ab0;② 2a+b=0;③ 3a+c0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤ 當(dāng)-1x3時(shí),y0. 其中正確結(jié)論的個(gè)數(shù)為( )

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將兩張長(zhǎng)為5,寬為1的矩形紙條交叉,讓兩個(gè)矩形對(duì)角線交點(diǎn)重合,且使重疊部分成為一個(gè)菱形.當(dāng)兩張紙條垂直時(shí),菱形周長(zhǎng)的最小值是4,把一個(gè)矩形繞兩個(gè)矩形重合的對(duì)角線交點(diǎn)旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過(guò)程中,得出所有重疊部分為菱形的四邊形中,周長(zhǎng)的最大值是(  )

A. 8B. 10C. 10.4D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)P,過(guò)A作直線ACPC交⊙O于另一點(diǎn)D,連接PA、PB

(1)求證:AP平分∠CAB

(2)P是直徑AB上方半圓弧上一動(dòng)點(diǎn),⊙O的半徑為2,則

①當(dāng)弦AP的長(zhǎng)是_____時(shí),以A,O,PC為頂點(diǎn)的四邊形是正方形;

②當(dāng)的長(zhǎng)度是______時(shí),以A,DO,P為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙OABC的外接圓,AC是直徑,弦BDBAEBDC,交DC的延長(zhǎng)線于點(diǎn)E

1)求證:BE是⊙O的切線;

2)當(dāng)sinBCE,AB3時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的直徑,點(diǎn)上一點(diǎn), 與過(guò)點(diǎn)的切線垂直,垂足為點(diǎn),直線的延長(zhǎng)線相交于點(diǎn),弦平分,交于點(diǎn),連接

1)求證: 平分;

2)求證:PC=PF

3)若,AB=14,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,、邊上的三等分點(diǎn),邊上的中線,為三段的長(zhǎng)分別是、、,若這三段有,則等于( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案