【題目】如圖,是的中線,是線段上一點(diǎn)(不與點(diǎn)重合).交于點(diǎn),,連結(jié).
(1)如圖1,當(dāng)點(diǎn)與重合時(shí),求證:四邊形是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長交于點(diǎn),若,且.
①求的度數(shù);
②當(dāng),時(shí),求的長.
【答案】(1)證明見解析(2)成立,理由見解析;(3)①30°.②1+.
【解析】
試題分析:(1)只要證明AE=BM,AE∥BM即可解決問題;
(2)成立.如圖2中,過點(diǎn)M作MG∥DE交CE于G.由四邊形DMGE是平行四邊形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四邊形ABDE是平行四邊形;
(3)①如圖3中,取線段HC的中點(diǎn)I,連接MI,只要證明MI=AM,MI⊥AC,即可解決問題;
②設(shè)DH=x,則AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四邊形ABDE是平行四邊形,推出DF∥AB,推出,可得,解方程即可;
試題解析:(1)證明:如圖1中,
∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中線,且D與M重合,
∴BD=DC,
∴△ABD≌△EDC,
∴AB=ED,∵AB∥ED,
∴四邊形ABDE是平行四邊形.
(2)結(jié)論:成立.理由如下:
如圖2中,過點(diǎn)M作MG∥DE交CE于G.
∵CE∥AM,
∴四邊形DMGE是平行四邊形,
∴ED=GM,且ED∥GM,
由(1)可知AB=GM,AB∥GM,
∴AB∥DE,AB=DE,
∴四邊形ABDE是平行四邊形.
(3)①如圖3中,取線段HC的中點(diǎn)I,連接MI,
∵BM=MC,
∴MI是△BHC的中位線,
∴∥BH,MI=BH,
∵BH⊥AC,且BH=AM.
∴MI=AM,MI⊥AC,
∴∠CAM=30°.
②設(shè)DH=x,則AH=x,AD=2x,
∴AM=4+2x,
∴BH=4+2x,
∵四邊形ABDE是平行四邊形,
∴DF∥AB,
∴,
∴,
解得x=1+或1-(舍棄),
∴DH=1+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若⊙O的半徑等于10cm,圓心O到直線l的距離是6cm,則直線l與⊙O位置關(guān)系是( )
A.相交
B.相切
C.相離
D.相切或相交
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的對角線,相交于點(diǎn).
(1)如圖1,,分別是,上的點(diǎn),與的延長線相交于點(diǎn).若,求證:;
(2)如圖2,是上的點(diǎn),過點(diǎn)作,交線段于點(diǎn),連結(jié)交于點(diǎn),交于點(diǎn).若,
①求證:;
②當(dāng)時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一段筆直的公路AC長20千米,途中有一處休息點(diǎn)B,AB長15千米,甲、乙兩名長跑愛好者同時(shí)從點(diǎn)A出發(fā),甲以15千米/時(shí)的速度勻速跑至點(diǎn)B,原地休息半小時(shí)后,再以10千米/時(shí)的速度勻速跑至終點(diǎn)C;乙以12千米/時(shí)的速度勻速跑至終點(diǎn)C,下列選項(xiàng)中,能正確反映甲、乙兩人出發(fā)后2小時(shí)內(nèi)運(yùn)動(dòng)路程y(千米)與時(shí)間x(小時(shí))函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小強(qiáng)洗漱時(shí)的側(cè)面示意圖,洗漱臺(矩形)靠墻擺放,高,寬,小強(qiáng)身高,下半身,洗漱時(shí)下半身與地面成(),身體前傾成(),腳與洗漱臺距離(點(diǎn),,,在同一直線上).
(1)此時(shí)小強(qiáng)頭部點(diǎn)與地面相距多少?
(2)小強(qiáng)希望他的頭部恰好在洗漱盆的中點(diǎn)的正上方,他應(yīng)向前或后退多少?
(,,,結(jié)果精確到)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+3與y軸交于點(diǎn)A,直線y=kx﹣1與y軸交于點(diǎn)B,與直線y=2x+3交于點(diǎn)C(﹣1,n).
(1)求n、k的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知等腰三角形ABC的底邊BC=20cm,D是腰AB上一點(diǎn),且CD=16cm,BD=12cm,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com