【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=﹣x(x﹣3)(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點O,A1,將C1繞點A1旋轉(zhuǎn)180°得C2,C2與x軸交于另一點A2.請繼續(xù)操作并探究:將C2繞點A2旋轉(zhuǎn)180°得C3,與x軸交于另一點A3;將C3繞點A3旋轉(zhuǎn)180°得C4,與x軸交于另一點A4,這樣依次得到x軸上的點A1,A2,A3,…,An,…,及拋物線C1,C2,…,n,…則n的頂點坐標(biāo)為_____(n為正整數(shù),用含n的代數(shù)式表示).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦“打造平安校園”活動,隨機(jī)抽取了部分學(xué)生進(jìn)行校園安全知識測試將這些學(xué)生的測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格,并將測試結(jié)果繪制成如下統(tǒng)計圖請你根據(jù)圖中信息,解答下列問題:
本次參加校園安全知識測試的學(xué)生有多少人?
計算B級所在扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計圖;
若該校有學(xué)生1000名,請根據(jù)測試結(jié)果,估計該校達(dá)到及格和及格以上的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,CD與BE、AE分別交于點P,M.對于下列結(jié)論:①△BAE∽△CAD;②MPMD=MAME;③2CB2=CPCM.其中正確的是( 。
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A在x軸上,點C在y軸上,點B的坐標(biāo)為(8,4),動點D從點O向點A以每秒兩個單位的速度運(yùn)動,動點E從點C向點O以每秒一個單位的速度運(yùn)動,設(shè)D、E兩點同時出發(fā),運(yùn)動時間為t秒,將△ODE沿DE翻折得到△FDE.
(1)若四邊形ODFE為正方形,求t的值;
(2)若t=2,試證明A、F、C三點在同一直線上;
(3)是否存在實數(shù)t,使△BDE的面積最?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PBEF;③PFEF=2;④EFEP=4AOPO.其中正確的是( 。
A. ①②③B. ①②④C. ①③④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標(biāo)為(1,0),頂點A的坐標(biāo)為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點A恰好落在該雙曲線上時停止運(yùn)動,則此時點C的對應(yīng)點C′的坐標(biāo)為( 。
A. (,0) B. (2,0) C. (,0) D. (3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)將△ABC向右平移4個單位,請畫出平移后的△A1B1C1;
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在網(wǎng)格內(nèi)畫出△A2B2C2;
(3)請在x軸上找出點P,使得點P到B與點A1距離之和最小,請直接寫出P點的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D為AB邊上的動點,過點D作DE⊥AB交邊AC于點E,過點E作EF⊥DE交BC于點F,連接DF.
(1)當(dāng)AD=4時,求EF的長度;
(2)求△DEF的面積的最大值;
(3)設(shè)O為DF的中點,隨著點D的運(yùn)動,則點O的運(yùn)動路徑的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣6x+k+3=0有兩個不相等的實數(shù)根
(1)求k的取值范圍;
(2)若k為大于3的整數(shù),且該方程的根都是整數(shù),求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com