【題目】如圖,大樓外墻有高為AB的廣告牌,由距離大樓20米的點C(即CD=20米)觀察它的頂部A的仰角是55°,底部B的仰角是42°,求AB的高度.(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

【答案】解:由已知可得:∠ACD=55°,∠BCD=42°,CD=20,
又∵tan∠ACD= ,tan∠BCD= ,
∴AD=CDtan∠ACD,BD=CDtan∠BCD,
∴AB=AD﹣BD=CDtan∠ACD﹣CDtan∠BCD
≈20×1.43﹣20×0.90
≈10.6(m)
答:AB的高度為10.6m.
【解析】利用已知得出AD=CDtan∠ACD,BD=CDtan∠BCD,進(jìn)而利用AB=AD﹣BD求出即可.
【考點精析】關(guān)于本題考查的關(guān)于仰角俯角問題,需要了解仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角△ABC中,∠ACB90°B60°,AD,CE分別是∠BAC和∠BCA的平分線,AD,CE相交于點F.

(1)求∠EFD的度數(shù);

(2)判斷FEFD之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⑴已知xy=5,x+y=6,則x-y=______

⑵已知(2016-a)(2017-a)=5,(a-2016)2+(2017-a)2的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2與直線l交于點A、B兩點,且A點為拋物線與y軸的交點,B(﹣2,﹣4),拋物線的對稱軸是直線x=2,過點A作AC⊥AB,交拋物線于點C、x軸于點D.

(1)求此拋物線的解析式;
(2)求點D的坐標(biāo);
(3)拋物線上是否存在點K,使得以AC為邊的平行四邊形ACKL的面積等于△ABC的面積?若存在,請直接寫出點K的橫坐標(biāo);若不存在,請說明理由.[提示:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=﹣ ,頂點坐標(biāo)為(﹣ , )].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 2﹣|﹣7|+(5 +25)0﹣(﹣1)2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家到梧州市一茶廠購買茶葉,購買茶葉數(shù)量為x千克(x>0),總費用為y元,現(xiàn)有兩種購買方式. 方式一:若商家贊助廠家建設(shè)費11500元,則所購茶葉價格為130元/千克;(總費用=贊助廠家建設(shè)費+購買茶葉費)
方式二:總費用y(元)與購買茶葉數(shù)量x(千克)滿足下列關(guān)系式:y=
請回答下面問題:
(1)寫出購買方式一的y與x的函數(shù)關(guān)系式;
(2)如果購買茶葉超過150千克,說明選擇哪種方式購買更省錢;
(3)甲商家采用方式一購買,乙商家采用方式二購買,兩商家共購買茶葉400千克,總費用共計74600元,求乙商家購買茶葉多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m為常數(shù),整式(m+2x2y+mxy23x2y的和為單項式.則m_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在□ABCD中,AEBCE,DF平分ADC 交線段AEF.

1)如圖1,若AE=AD,ADC=60, 請直接寫出線段CDAF+BE之間所滿足的等量關(guān)系;

2)如圖2, AE=AD,你在(1)中得到的結(jié)論是否仍然成立, 若成立,對你的結(jié)論加以證明, 若不成立, 請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,;向右平移5個單位向上平移4個單位之后得到的圖象

(1)兩點的坐標(biāo)分別為____________________________.

(2)作出平移之后的圖形.

(3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案