【題目】定義符號min{a,b}的含義:當(dāng)a≥b時,min{a,b}=b;當(dāng)a<b時,min{a,b}=a,如min{1,﹣4}=﹣4,min{﹣6,﹣2}=﹣6,則min{﹣x2+2,﹣2x}的最大值為( )
A. 2﹣2 B. +1 C. 1﹣ D. 2+2
【答案】A
【解析】
根據(jù)題意和題目中的新定義,利用分類討論的方法,可以求得min{﹣x2+2,﹣2x}的最大值,本題得以解決.
當(dāng)﹣x2+2≥﹣2x時,
解得,1﹣≤x≤1+,
∴當(dāng)1﹣≤x≤1+時,min{﹣x2+2,﹣2x}=﹣2x,此時,當(dāng)x=1﹣時,﹣2x取得最大值﹣2+2;
當(dāng)﹣x2+2≤﹣2x時,
解得,x≤1﹣或x≥1+,
∴當(dāng)x≤1﹣或x≥1+時,min{﹣x2+2,﹣2x}=﹣x2+2,此時,當(dāng)x=1﹣時,﹣x2+2取得最大值﹣2+2;
由上可得,min{﹣x2+2,﹣2x}的最大值為2﹣2,
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)系的第一象限建立網(wǎng)格,網(wǎng)格中的每個小正方形邊長都為1,格點的頂點坐標(biāo)分別為.
(1)若外接圓的圓心為,寫出點的坐標(biāo).
(2)以點D為頂點,在網(wǎng)格中畫一個格點△DEF,使△DEF~△ABC,且相似比為1:2.(畫出符合要求的一個三角形即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并測得OE=0.8 m,OF=3 m,求圍墻AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏家對面新建了一幢圖書大廈,小敏在自家窗口測得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20米.
(1)求出大廈的高度BD;
(2)求出小敏家的高度AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AC是⊙O直徑,D是的中點,過點D作CB的垂線,分別交CB、CA延長線于點F、E.
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若sinE=,求AB:EF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸相交于、兩點.若在拋物線上有且只有三個不同的點、、,使得、、的面積都等于,則的值是( )
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,A、B相距20海里,這時在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時的速度前往救援,問巡邏艇能否在1小時內(nèi)到達漁船C處?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB在平面直角坐標(biāo)系中,點O與坐標(biāo)原點重合,點A在x軸上,點B在y軸上,,將△AOB沿直線BE折疊,使得OB邊落在AB上,點O與點D重合.
(1)求直線BE的解析式;
(2)求點D的坐標(biāo);
(3)x軸上是否存在點P,使△PAD為等腰三角形?若存在,請直接寫出點P的坐標(biāo),若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com