【題目】如圖,將△ABC繞點A按逆時針方向旋轉至△AB′C′(B與B′,C與C′分別是對應頂點),使AB′⊥BC,B′C′分別交AC,BC于點D,E,已知AB=AC=5,BC=6,則DE的長為_____.
【答案】
【解析】
根據等腰三角形的性質與勾股定理得到AF=4,再根據旋轉的性質得到B'F=1,∠B=∠B',利用三角形函數求得EF=,則EC=,易得△DEC為直角三角形,然后利用三角形函數即可得解.
解:如圖,
∵AB=AC=5,AB'⊥BC,
∴BF=CF=BC=3,∠B=∠C,
∴根據勾股定理得:AF=4,
∵△ABC繞點A按逆時針方向旋轉至△AB'C',
∴AB=AB'=5,∠B=∠B',
∴B'F=1,
∵tan∠B=,
∴tan∠B'=,
∴EF=,
∴EC=FC﹣EF=,
∵∠B'+∠BEB'=90°,且∠C=∠B=∠B',∠BEB'=∠CED,
∴∠C+∠DEC=90°,
∵sin∠C=sin∠B,
∴,
∴DE=.
故答案為:
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數式表示);
(2)若以AD為直徑的圓經過點C.
①求拋物線的函數關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,長方形ABCD中,AB=5,AD=12,E為AD邊上一點,DE=4,動點P從點B出發(fā),沿B→C→D以2個單位/s作勻速運動,設運動時間為t.
⑴ 當t為 s時,△ABP與△CDE全等;
⑵ 如圖2,EF為△AEP的高,當點P在BC邊上運動時,EF的最小值是 ;
⑶ 當點P在EC的垂直平分線上時,求出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現(xiàn)有一張五邊形的鋼板ABCDE如圖所示,∠A=∠B=∠C=90°,現(xiàn)在AB邊上取一點P,分別以AP,BP為邊各剪下一個正方形鋼板模型,所剪得的兩個正方形面積和的最大值為_____m2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B,F,C,E在直線l上(F,C之間不能直接測量),點A,D在l異側,測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,M是AB邊上的中點,點D、E分別是AC、BC邊上的動點,連接DM 、ME、CM、DE, DE與CM相交于點F且∠DME=90°.則下列5個結論: (1)圖中共有兩對全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;(4)AD2+BE2=DE2;(5)四邊形CDME的面積發(fā)生改變.其中正確的結論有( )個.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:通過小學的學習我們知道,分數可分為“真分數”和“假分數”,而假分數都可化為帶分數,如:我們定義:在分式中,對于只含有一個字母的分式,當分子的次數大于或等于分母的次數時,我們稱之為“假分式”;當分子的次數小于分母的次數時,我們稱之為“真分式”.
如這樣的分式就是假分式;再如:,這樣的分式就是真分式類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式)
如:;
解決下列問題:
(1)分式是______分式(填“真分式”或“假分式”);
(2)將假分式化為帶分式;
(3)如果x為整數,分式的值為整數,求所有符合條件的x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABOC是正方形,點A的坐標為(1,1),是以點B為圓心,BA為半徑的圓;是以點O為圓心,OA1為半徑的圓弧,是以點C為圓心,CA2為半徑的圓弧,是以點A為圓心,AA3為半徑的圓弧,繼續(xù)以點B、O、C、A為圓心按上述作法得到的曲線AA1A2A3A4A5…稱為正方形的“漸開線”,那么點A5的坐標是______,點A2018的坐標是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“學生坐校車上學”的安全問題越來越受到社會的關注,某校利用周末假期,隨機抽查了本校若干名學生和部分家長對“初中生坐校車上學”現(xiàn)象的看法,統(tǒng)計整理制作了如下的統(tǒng)計圖,請回答下列問題:
(1)這次抽查的家長總人數為 ;
(2)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)從這次接受調查的學生中,隨機抽查一個學生恰好抽到持“無所謂”態(tài)度的概率是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com