【題目】已知∠AOB=90°,OM是∠AOB的平分線,點D是邊OB上一定點,將三角板的直角頂點P在射線OM上移動,使一直角邊經(jīng)過點D,另一直角與邊OA交于點C.容易證得PC=PD(如圖①)

(1)若另一直角邊與邊OA的反向延長線相交于點C(如圖②),試問PC與PD還會相等嗎?若相等,請予以證明;若不相等,請說明理由;

(2)已知OD=4,三角板在移動過程中,另一直角邊與直線OA,直線OB分別交于點C,E,且以P,D,E為頂點的三角形與OCD相似,試求線段OP的長。

【答案】(1)PC=PD,證明見解析;(2)OP=或者或4

【解析】(1)過P點做PQ平行于x軸,交y軸于點Q,做DF垂直于PQ交于F

∵DF=0Q, ∠AOM=45,OQ=QF.

QP=DE, ∠FPD=∠QCP, ∠DFP=∠PQC

PC=PD

(2)OP=或者或4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=-x+6的圖象與坐標軸交于A、B點(如圖),AE平分∠BAO,交x軸于點E.


(1)求點B的坐標;

(2)求直線AE的表達式;

(3)過點B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩公司近年銷售收入情況的折線統(tǒng)計圖,根據(jù)統(tǒng)計圖得出下列結(jié)論,其中正確的是( 。

A.甲公司近年的銷售收入增長速度比乙公司快
B.乙公司近年的銷售收入增長速度比甲公司快
C.甲、乙兩公司近年的銷售收入增長速度一樣快
D.不能確定甲、乙兩公司近年銷售收入增長速度的快慢

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:
(1)5(x+8)=6(2x﹣7)+5;
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形 中,點 邊上任意一點,連接 .過點 作線段 的平行線,交 延長線于點

(1)證明:
(2)過點 ,垂足為點 .點 邊中點,連接 ,
① 根據(jù)題意完成作圖;
② 猜想線段 的數(shù)量關系,并寫出你的證明思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)約定“※”為一種新的運算符號,先觀察下列各式:
1※3=1×4+3=7;3※(﹣1)=3×4﹣1=11;5※ =5×4+ =
5※4=5×4+4=24;4※(﹣3)=4×4﹣3=13;(﹣ )※0=(﹣ )×4+0=﹣

根據(jù)以上的運算規(guī)則,寫出a※b=
(2)根據(jù)(1)中約定的a※b的運算規(guī)則,求解問題①和②
①若(x﹣3)※x的值等于13,求x的值;
②若2m﹣n=2,請計算:(m﹣n)※(2m+n).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過原點的拋物線y=﹣x2﹣2mx(m1)與x軸的另一個交點為A.過點P(﹣1,m)作直線PDx軸于點D,交拋物線于點B,BCx軸交拋物線于點C.

(1)當m=2時.

①求線段BC的長及直線AB所對應的函數(shù)關系式;

②若動點Q在直線AB上方的拋物線上運動,求點Q在何處時,QAB的面積最大?

③若點F在坐標軸上,且PF=PC,請直接寫出符合條件的點F在坐標;

(2)當m1時,連接CA、CP,問m為何值時,CACP?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在雙曲線上,AD垂直軸,垂足為

A,點CAD上,CB平行于軸交雙曲線于點B,直線AB軸交于點F,已知AC

AD=13,點C的坐標為(2,2)。

1)求該雙曲線的解析式;

2)求△OFA的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作CD∥OF交AB的延長線于點D,延長AF交直線CD于點H.

(1)求證:CD是半圓O的切線;

(2)若DH=,求EF的長和半徑OA的長.

查看答案和解析>>

同步練習冊答案