如圖,已知AB是⊙O的直徑,P是AB延長線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC•CE=PA•BE.
證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線,
∴OC⊥PD,
而AD⊥PC,
∴OCPD,
∴∠ACO=∠CAD,
而∠ACO=∠OAC,
∴∠DAC=∠CAO,
又∵CE⊥AB,
∴∠AEC=90°,
∴Rt△ACE≌Rt△ACD,
∴CD=CE,AD=AE;
(2)在Rt△PCE和Rt△PAD中,∠CPE=∠APD,
∴Rt△PCERt△PAD,
∴PC:PA=CE:AD,
又∵AB為⊙O的直徑,
∴∠ACB=90°,
而∠DAC=∠CAO,
∴Rt△EBCRt△DCA,
∴BE:CE=CD:AD,
而CD=CE,
∴BE:CE=CE:AD,
∴BE:CE=PC:PA,
∴PC•CE=PA•BE.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB切⊙P于點(diǎn)C,且ABOP.若陰影部分的面積為10π,則弦AB的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,在⊙O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點(diǎn)的切線PD與直線AB交于P點(diǎn),則∠ADP的度數(shù)為( 。
A.40°B.45°C.50°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,CA=CB,CDAB且與OA的延長線交于點(diǎn)D.
(1)判斷CD與⊙O的位置關(guān)系并說明理由;
(2)若∠ACB=120°,OA=2.求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的切線,B為切點(diǎn),AO與⊙O交于點(diǎn)C,若∠BAO=40°,則∠OCB的度數(shù)為( 。
A.40°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的半徑為5cm,直線l⊥OA交⊙O于點(diǎn)C、D,垂足為B,且CD=8cm,則直線l沿半徑OA向下平移______cm時與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線MN切⊙O于A,AB是⊙O的弦,∠MAB的平分線交⊙O于C,連接CB并延長交MN于N,如果AN=6,NB=4,那么弦AB的長是( 。
A.
15
2
B.3C.5D.
10
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠C=90°,AC=8,AB=10,點(diǎn)P在AC上,AP=2,若⊙O的圓心在線段BP上,且⊙O與AB、AC都相切,則⊙O的半徑是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在△ABC中,AB=AC=6,cosB=
1
3
?點(diǎn)O在邊AB上,⊙O過點(diǎn)B且分別與邊AB、BC交于點(diǎn)D、E,且EF⊥AC,垂足為F,設(shè)OB=x,CF=y.
(1)求證:直線EF是⊙O的切線;
(2)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫自變量的取值范圍).

查看答案和解析>>

同步練習(xí)冊答案