【題目】已知二次函數(shù)y=(t+1)x2+2(t+2)x+在x=0和x=2時(shí)的函數(shù)值相等
(1)求二次函數(shù)的解析式,并作圖象;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的象都經(jīng)過點(diǎn)A(﹣3,m),求m和k的值.
【答案】(1);(2)m=-6,k=4.
【解析】
(1)由題意可得拋物線的對(duì)稱軸為直線x=1,即=1,求得 t的值即可求得答案;
(2)把x=-3代入二次函數(shù)解析可求得m值,從而可得A點(diǎn)坐標(biāo),把A點(diǎn)坐標(biāo)代入一次函數(shù)解析即可求得k.
(1)∵二次函數(shù)y=(t+1)x2+2(t+2)x+在x=0和x=2時(shí)的函數(shù)值相等,
∴拋物線的對(duì)稱軸為直線x=1,
則-=1,∴ t=-,
∴ y=-x2+x+;
(2)∵ 二次函數(shù)圖象必經(jīng)過A點(diǎn),
∴ m=-×(-3)2+(-3)+ =-6,
∴A(-3,-6),
又一次函數(shù)y=kx+6的圖象經(jīng)過A點(diǎn),
∴ -3k+6=-6,
∴ k=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b分別與x軸、y軸交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),過點(diǎn)B的另一條直線交x軸負(fù)半軸于點(diǎn)C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo)及直線BC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)在線段OB上存在點(diǎn)P,使得點(diǎn)P到點(diǎn)B,C的距離相等,試求出點(diǎn)P的坐標(biāo);
(3)如果在x軸上方存在點(diǎn)D,使得以點(diǎn)A,B,D為頂點(diǎn)的三角形與△ABC全等,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).
請(qǐng)從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點(diǎn),E是BF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn),ABCD的邊滿足條件:_____時(shí)(填上一個(gè)你認(rèn)為正確的條件),四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,E、F分別是AD、BC上的點(diǎn),將平行四邊形ABCD沿EF所在直線翻折,使點(diǎn)B與點(diǎn)D重合,且點(diǎn)A落在點(diǎn)A′處.
(1)求證:△A′ED≌△CFD;
(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠車間共有10名工人,調(diào)查每個(gè)工人的日均生產(chǎn)能力,獲得數(shù)據(jù)制成如下統(tǒng)計(jì)圖.
(1)求這10名工人的日均生產(chǎn)件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)若要使占60%的工人都能完成任務(wù),應(yīng)選什么統(tǒng)計(jì)量(平均數(shù)、中位數(shù)、眾數(shù))做日生產(chǎn)件數(shù)的定額?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com