【題目】如圖,在以點O為原點的直角坐標(biāo)系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點B,點C在第二象限內(nèi)且為直線AB上一點,OC=AB,反比例函數(shù)y=的圖象經(jīng)過點C,則k的值為 .
【答案】-.
【解析】
試題解析:如圖,在y=-x+1中,令y=0,則x=2;令x=0,得y=1,
∴A(2,0),B(0,1).
在Rt△AOB中,由勾股定理得:AB=.
設(shè)∠BAO=θ,則sinθ=,cosθ=.
過點O作RT△AOB斜邊上的高OE,斜邊上的中線OF,則AE=OAcosθ=2×=,OF=AB,
∵OC=AB,
∴OC=OF=,
∴EF=AE-AF=-=.
∵OC=OF,OE⊥CF,
∴EC=EF=,
∴AC=AE+EC=+=.
過點C作CG⊥x軸于點G,則CG=ACsinθ=×=,
AG=ACcosθ=×=,
∴OG=AG-OA=-2=.
∴C(-,).
∵反比例函數(shù)y=的圖象經(jīng)過點C,
∴k=-×=-,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象在第四象限的交點為點B.
(1)求直線AB的解析式;
(2)動點P(x,0)在x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=-分別與x軸、y軸交于點M、N,點A、B分別在y軸、x軸上,且∠B=60°,AB=2,將△ABO繞原點O順時針轉(zhuǎn)動一周,當(dāng)AB與直線MN平行時點A的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列算式:①45;②(-3)20;③0100;④(-1)100;⑤(-1)305;⑥-62.其中,運算結(jié)果為正數(shù)的有________,運算結(jié)果為負數(shù)的有________,運算結(jié)果為0的有________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(2,m)和點B(n,﹣3)關(guān)于x軸對稱,則m+n的值是( )
A.﹣1
B.1
C.5
D.﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個動點,其 中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)當(dāng)t=2秒時,求PQ的長;
(2)求出發(fā)時間為幾秒時,△PQB是等腰三角形?
(3)若Q沿B→C→A方向運動,則當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com