【題目】問題情境

小明和小麗共同探究一道數(shù)學題:

如圖①,在△ABC中,點D是邊BC的中點,∠BAD=65°,∠DAC=50°,AD=2,

AC

探索發(fā)現(xiàn)

小明的思路是:延長AD至點E,使DE=AD,構造全等三角形.

小麗的思路是:過點CCEAB,交AD的延長線于點E,構造全等三角形.

選擇小明、小麗其中一人的方法解決問題情境中的問題.

類比應用

如圖②,在四邊形ABCD中,對角線ACBD相交于點O,點OBD的中點,

ABAC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長為___________

【答案】

【解析】分析:探索發(fā)現(xiàn):按照兩個人的做題思路,作圖,證明全等即可.

類比應用:參照探索發(fā)現(xiàn)的方法,進行求解即可.

詳解:探索發(fā)現(xiàn)

小明的方法:

延長AD至點E,使DE=AD=2,如圖.

AE=AD+DE=2+2=4

∵點D是邊BC的中點,

BD=CD

∵∠ADB=EDC,

∴△ABD≌△ECD

∴∠AEC=BAD=65°

∴∠ACE=180°-EAC-AEC=180°-50°-65°=65°

∴∠ACE=AEC

AC=AE=4

AC的長為4

小麗的方法:

過點CCEAB,交AD的延長線于點E,如圖.

∴∠DCE =ABD,∠AEC=BAD=65°

∴∠ACE=180°-EAC-AEC=180°-50°-65°=65°

∴∠ACE=AEC

AC=AE

∵點D是邊BC的中點,

BD=CD

∴△ABD≌△ECD

DE=AD=2

AE=AD+DE=2+2=4

AC=AE=4

AC的長為4

類比應用: 過點DDEAB,交AD于點E,如圖.

∴∠AED =DEC =BAC=90°,

∴∠ACD=180°-CAD-ADC=180°-45°-67.5°=67.5°

∴∠ACD=ADC

AC=AD

∵點O是邊BD的中點,

BO=OD

∴△ABO≌△EDO

AO=OE=2

AE=DE=AB=4

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠B=90°,AB=16cm,BC=12cmP、QABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長.

2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是矩形ABCD對角線的交點,DE平分∠ADC交BC于點E,若∠BDE=15°,則∠COE=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關系如圖所示:

1)求yx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?

3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點,現(xiàn)有經(jīng)過點A的直線l:y=kx+b1與y軸交于點C,與拋物線的另個交點為D.

(1)求拋物線的函數(shù)表達式;

(2)若點D在第二象限且滿足CD=5AC,求此時直線1的解析式;在此條件下,點E為直線1下方拋物線上的一點,求ACE面積的最大值,并求出此時點E的坐標;

(3)如圖,設P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點Q在拋物線上,若以點A,D,P,Q為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點Q的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=5,BC=8,若ABC沿射線BC方向平移m個單位得到DEF,頂點A,B,C分別與D,E,F(xiàn)對應,若以點A,D,E為頂點的三角形是等腰三角形,則m的值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,分別以AC,BC為邊長,在三角形外作正方形ACFG和正方形BCED.若AC4AB6,則EF______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC△ABC的高BH,CM交于點P

1)求證:PBPC

2)若PB5,PH3,求AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A1,0),與y軸的交點B在(0,2)和(0,1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:①abc0 4a+2b+c0 4acb28a abc.其中含所有正確結論的選項是(  )

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

同步練習冊答案