【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____.
【答案】65°
【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=B′C,然后判斷出△BCB′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CBB′=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠B′A′C,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠A=∠B′A′C.
∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△A′B′C,
∴BC=B′C,
∴△BCB′是等腰直角三角形,
∴∠CBB′=45°,
∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,
由旋轉(zhuǎn)的性質(zhì)得∠A=∠B′A′C=65°,
故答案為:65°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鎮(zhèn)政府想了解李家莊 130 戶家庭的經(jīng)濟情況,從中隨機抽取了部分家庭進行調(diào)查,獲得了他們的年收入(單位:萬元),并對數(shù)據(jù)(年收入)進行整理、描述和分析.下面給出了部分信息.
a.被抽取的部分家庭年收入的頻數(shù)分布直方圖和扇形統(tǒng)計圖如下(數(shù)據(jù)分組:0.9≤x<1.3,1.3≤x<1.7 , 1.7≤x<2.1, 2.1≤x<2.5, 2.5≤x<2.9 , 2.9≤x<3.3 )
b.家庭年收入在1.3≤x<1.7 這一組的是: 1.3 1.3 1.4 1.5 1.6 1.6
根據(jù)以上信息,完成下列問題:
(1)將兩個統(tǒng)計圖補充完整;
(2)估計李家莊有多少戶家庭年收入不低于 1.5 萬元且不足 2.1 萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=150°,∠BCD=30°,點M在BC上,AB=BM,CM=CD,點N為AD的中點,求證:BN⊥CN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC⊥AC,圓心O在AC上,點M與點C分別是AC與⊙O的交點,點D是MB與⊙O的交點,點P是AD延長線與BC的交點,且.
(1)求證:PD是⊙O的切線;
(2)若AD=12,AM=MC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了完成“舌尖上的中國”的錄制,節(jié)目組隨機抽查了某省“A.奶制品類,B.肉制品類,C.面制品類,D.豆制品類”四類特色美食若干種,將收集的數(shù)據(jù)整理并繪制成下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中信息完成下列問題:
(1)這次抽查了四類特色美食共 種,扇形統(tǒng)計圖中a= ,扇形統(tǒng)計圖中A部分圓心角的度數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)如果全省共有這四類特色美食120種,請你估計約有多少種屬于“豆制品類”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD由四個相同的大長方形,四個相同的小長形以及一個小正方形組成,其中四個大長方形的長和寬分別是小長方形長和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是( )
A.36B.25C.20D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是__.
(2)連接NB,若AB=8cm,△NBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長值最?若存在,標(biāo)出點P的位置并求△PBC的周長最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線交于點O,以AD為邊向外作Rt△ADE,∠AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com