【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙ O的切線.
(2)求AD的長.
【答案】(1)證明見解析;(2)AD=4.
【解析】
(1)連接OD,欲證明DE是⊙O的切線,只要證明OD⊥DE即可.
(2)過點O作OF⊥AC于點F,只要證明四邊形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.
(1)如圖,連接OD.
∵AD平分∠BAC,∴∠DAE=∠DAB.
∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE.
∵DE⊥AC,∴OD⊥DE,
∵OD是⊙O的半徑,
∴DE是⊙O切線;
(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF,
∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4,∴AE=AF+EF=3+5=8
在Rt△ADE中,AD2=DE2+AE2=42+82=80,
∴AD=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點E,連結(jié)DE、OB,且DE∥OB.
(1)求證:BC是⊙O的切線.
(2)設(shè)OB與⊙O交于點F,連結(jié)EF,若AD=OD,DE=4,求弦EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國慶70華誕期間,各超市購物市民絡(luò)繹不絕,呈現(xiàn)濃濃節(jié)日氣氛.“百姓超市”用320元購進(jìn)一批葡萄,上市后很快脫銷,該超市又用680元購進(jìn)第二批葡萄,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但進(jìn)價每市斤多了0.2元.
(1)該超市第一批購進(jìn)這種葡萄多少市斤?
(2)如果這兩次購進(jìn)的葡萄售價相同,且全部售完后總利潤不低于,那么每市斤葡萄的售價應(yīng)該至少定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC∥DF,點B在AC上,點E在DF上,連結(jié)AE,BD相交于點P,連結(jié)CE,BF相交于點Q,若AB=EF,BC=DE.
(1)求證:四邊形BPEQ為平行四邊形;
(2)若DP=2BP,BF=3,CE=6.求證:四邊形BPEQ為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P為某個封閉圖形邊界上的一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設(shè)點M的運動時間為x,線段PM的長度為y,表示y與x的函數(shù)圖象大致如圖所示,則該封閉圖形可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C1處,折痕為EF,若AB=4,BC=8,則線段EF的長度為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金秋時節(jié),碩果飄香,某精準(zhǔn)扶貧項目果園上市一種有機(jī)生態(tài)水果.為幫助果園拓寬銷路,欣欣超市對這種水果進(jìn)行代銷,進(jìn)價為5元/千克,售價為6元/千克時,當(dāng)天的銷售量為100千克;在銷售過程中發(fā)現(xiàn):銷售單價每上漲0.5元,當(dāng)天的銷售量就減少5千克.設(shè)當(dāng)天銷售單價統(tǒng)一為x元/千克(x≥6,且x是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價所在的范圍;
(3)若該種水果每千克的利潤不超過80%,要想當(dāng)天獲得利潤最大,每千克售價為多少元?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE、BF,交點為G.
(1)求證:AE⊥BF;
(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP交BA的延長線于點Q,求sin∠BQP的值;
(3)將△ABE繞點A逆時針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點N,當(dāng)正方形ABCD的邊長為4時,直接寫出四邊形GHMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A(0,8),B(4,0),直線y=﹣x沿x軸作平移運動,平移時交OA于D,交OB于C.
(1)當(dāng)直線y=﹣x從點O出發(fā)以1單位長度/s的速度勻速沿x軸正方向平移,平移到達(dá)點B時結(jié)束運動,過點D作DE⊥y軸交AB于點E,連接CE,設(shè)運動時間為t(s).
①是否存在t值,使得△CDE是以CD為腰的等腰三角形?如果能,請直接寫出相應(yīng)的t值;如果不能,請說明理由.
②將△CDE沿DE翻折后得到△FDE,設(shè)△EDF與△ADE重疊部分的面積為y(單位長度的平方).求y關(guān)于t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍;
(2)若點M是AB的中點,將MC繞點M順時針旋轉(zhuǎn)90°得到MN,連接AN,請直接寫出AN+MN的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com