【題目】如圖,在矩形紙片ABCD中,已知AB=2,BC=,點(diǎn)E在邊CD上移動(dòng),連接AE,將多邊形ABCE沿直線AE翻折得到多邊形AB’C’E,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B’,C’
(1)當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求DF的長(zhǎng)
(2)如果點(diǎn)M為CD的中點(diǎn),那么在點(diǎn)E從點(diǎn)C移動(dòng)到點(diǎn)D的過(guò)程中,求C’M的最小值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出):分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b
(問(wèn)題探究):某數(shù)學(xué)“探究學(xué)習(xí)”小組對(duì)以上因式分解題目進(jìn)行了如下探究:
探究1:分解因式:(1)2x2+2xy﹣3x﹣3y
該多項(xiàng)式不能直接使用提取公因式法,公式法進(jìn)行因式分解.于是仔細(xì)觀察多項(xiàng)式的特點(diǎn).甲發(fā)現(xiàn)該多項(xiàng)式前兩項(xiàng)有公因式2x,后兩項(xiàng)有公因式﹣3,分別把它們提出來(lái),剩下的是相同因式(x+y),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)
另:乙發(fā)現(xiàn)該多項(xiàng)式的第二項(xiàng)和第四項(xiàng)含有公因式y,第一項(xiàng)和第三項(xiàng)含有公因式x,把y、x提出來(lái),剩下的是相同因式(2x﹣3),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)
探究2:分解因式:(2)a2﹣b2+4a﹣4b
該多項(xiàng)式亦不能直接使用提取公因式法,公式法進(jìn)行因式分解,于是若將此題按探究1的方法分組,將含有a的項(xiàng)分在一組即a2+4a=a(a+4),含有b的項(xiàng)一組即﹣b2﹣4b=﹣b(b+4),但發(fā)現(xiàn)a(a+4)與﹣b(b+4)再?zèng)]有公因式可提,無(wú)法再分解下去.于是再仔細(xì)觀察發(fā)現(xiàn),若先將a2﹣b2看作一組應(yīng)用平方差公式,其余兩項(xiàng)看作一組,提出公因式4,則可繼續(xù)再提出因式,從而達(dá)到分解因式的目的.
解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)
(方法總結(jié)):對(duì)不能直接使用提取公因式法,公式法進(jìn)行分解因式的多項(xiàng)式,我們可考慮把被分解的多項(xiàng)式分成若干組,分別按“基本方法”即提取公因式法和運(yùn)用公式法進(jìn)行分解,然后,綜合起來(lái),再?gòu)目傮w上按“基本方法”繼續(xù)進(jìn)行分解,直到分解出最后結(jié)果.這種分解因式的方法叫做分組分解法.
分組分解法并不是一種獨(dú)立的因式分解的方法,而是通過(guò)對(duì)多項(xiàng)式進(jìn)行適當(dāng)?shù)姆纸M,把多項(xiàng)式轉(zhuǎn)化為可以應(yīng)用“基本方法”分解的結(jié)構(gòu)形式,使之具有公因式,或者符合公式的特點(diǎn)等,從而達(dá)到可以利用“基本方法”進(jìn)行分解因式的目的.
(學(xué)以致用):嘗試運(yùn)用分組分解法解答下列問(wèn)題:
(1)分解因式:
(2)分解因式:
(拓展提升):
(3)嘗試運(yùn)用以上思路分解因式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過(guò)M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;
②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,AB=BC=9,∠BCD=120°.點(diǎn)M從點(diǎn)A出發(fā)沿射線AB方向移動(dòng).同時(shí)點(diǎn)N從點(diǎn)B出發(fā),以相同的速度沿射線BC方向移動(dòng),連接AN,CM,直線AN、CM相交于點(diǎn)P.
(1)如圖甲,當(dāng)點(diǎn)M、N分別在邊AB、BC上時(shí),
①求證:AN=CM;
②連接MN,當(dāng)△BMN是直角三角形時(shí),求AM的值.
(2)當(dāng)M、N分別在邊AB、BC的延長(zhǎng)線上時(shí),在圖乙中畫(huà)出點(diǎn)P,并直接寫(xiě)出∠CPN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知2輛A型車(chē)和1輛B型車(chē)載滿貨物一次可運(yùn)貨10噸.用1輛A型車(chē)和2輛B型車(chē)載滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車(chē)a輛和B型車(chē)b輛,一次運(yùn)完,且每輛車(chē)都滿載貨物.根據(jù)以上信息解答下列問(wèn)題:
(1)1輛A型車(chē)和1輛B型車(chē)載滿貨物一次分別可運(yùn)貨物多少?lài)崳?/span>
(2)請(qǐng)幫助物流公司設(shè)計(jì)租車(chē)方案
(3)若A型車(chē)每輛車(chē)租金每次100元,B型車(chē)每輛車(chē)租金每次120元.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少的租車(chē)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“”或“”填空:
(1)如果,,那么a________b;
(2)如果,,那么a____b;
(3)如果,,那么a____b;
(4)當(dāng),b____0時(shí),或者,b___0時(shí),有.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩條輪船同時(shí)從港口A出發(fā),甲輪船以每小時(shí)30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時(shí)15海里的速度沿著正東方向行進(jìn),1小時(shí)后,甲船接到命令要與乙船會(huì)合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:
(1)港口A與小島C之間的距離;
(2)甲輪船后來(lái)的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com