如圖,在 梯形ABCD中AD∥BC,AB=CD,E為梯形ABCD外一點(diǎn),且EA=ED,試判斷EB與EC的大小關(guān)系并說明理由.
分析:由等腰梯形的性質(zhì)知,AB=CD,∠BAD=∠CDA,由等邊對(duì)等角得到∠EAD=∠EDA證得∠EAB=∠EDC,再由SAS證得△ABE≌△DCE?EB=EC
解答:證明:在等腰梯形ABCD中AB=CD,
∴∠BAD=∠CDA,
∵EA=ED,
∴∠EAD=∠EDA.
∴∠EAB=∠EDC,
在△ABE和△DCE中,
AB=DC
∠EAB=∠EDC
EA=ED

∴△ABE≌△DCE,
∴EB=EC.
點(diǎn)評(píng):此題考查了等腰梯形的性質(zhì)、全等三角形的判定及性質(zhì),解答本題的關(guān)鍵是熟練掌握等腰梯形同一底上的兩個(gè)角相等及等腰梯形的兩條對(duì)角線相等,另外要熟練掌握三角形全等的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠C=90°,E為CD的中點(diǎn),EF∥AB交BC于點(diǎn)F
(1)求證:BF=AD+CF;
(2)當(dāng)AD=1,BC=7,且BE平分∠ABC時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分別在AD、DC的延長(zhǎng)線上,且DE=CF.AF交BE于P.
(1)證明:△ABE≌△DAF;
(2)求∠BPF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,∠BCD=90°,BD平分∠ABC.
(1)求證:DC=BC;
(2)E是梯形內(nèi)一點(diǎn),F(xiàn)是梯形外一點(diǎn),且∠EDC=∠FBC,DE=BF,試判斷△ECF的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求
BEBF
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,∠C=45°,BE⊥CD于點(diǎn)E,AD=1,CD=3
2
.求BE的長(zhǎng)為
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠·優(yōu)化訓(xùn)練·八年級(jí)數(shù)學(xué)下 題型:013

如圖,在梯形ABC中,AB∥CD,中位線EF與對(duì)角線AC、BD交于M、N兩點(diǎn),若EF=18 cm,MN=8 cm,則AB的長(zhǎng)等于

[  ]

A.10 cm

B.13 cm

C.20 cm

D.26 cm

查看答案和解析>>

同步練習(xí)冊(cè)答案