已知等腰△ABC的底邊BC=8,腰長(zhǎng)AB=5,一動(dòng)點(diǎn)P在底邊上從點(diǎn)B開(kāi)始向點(diǎn)C以每秒0.5的速度運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到PA與腰垂直的位置時(shí),點(diǎn)P運(yùn)動(dòng)的時(shí)間應(yīng)為
3.5或12.5
3.5或12.5
秒.
分析:根據(jù)等腰三角形三線合一性質(zhì)可得到BD的長(zhǎng),由勾股定理可求得AD的長(zhǎng),再分兩種情況進(jìn)行分析:①PA⊥AC②PA⊥AB,從而可得到運(yùn)動(dòng)的時(shí)間.
解答:解:如圖,作AD⊥BC,交BC于點(diǎn)D,
∵BC=8cm,
∴BD=CD=
1
2
BC=4cm,
∴AD=
AB2-BD2
=3,
分兩種情況:當(dāng)點(diǎn)P運(yùn)動(dòng)t秒后有PA⊥AC時(shí),
∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
∴PD2+32=(PD+4)2-52∴PD=2.25,
∴BP=4-2.25=1.75=0.5t,
∴t=3 5秒,
當(dāng)點(diǎn)P運(yùn)動(dòng)t秒后有PA⊥AB時(shí),同理可證得PD=2.25,
∴BP=4+2.25=6.25=0.5t,
∴t=12.5秒,
∴點(diǎn)P運(yùn)動(dòng)的時(shí)間為3.5秒或12.5秒.
故答案為:3.5或12.5.
點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)和勾股定理的應(yīng)用,在解題時(shí)還要注意分類(lèi)討論思想的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖:已知等腰△ABC中,腰AB=AC=13cm,底BC=24cm,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知等腰△ABC中,AB=AC=13,BC=10
(1)如圖①,△ABC的面積=
60
60
,腰AC上的高BD=
120
13
120
13

(2)如圖②,P是底邊BC上任意一點(diǎn),PE⊥AB于E,PF⊥AC于F,連接AP,不難發(fā)現(xiàn):△ABP的面積+△ACP的面積=△ABC的面積,據(jù)此式,你能求出PE+PF等于多少嗎?你有什么發(fā)現(xiàn)?
(3)如圖③四邊形BCGH是形狀、大小一定的等腰梯形,點(diǎn)P是下底BC上一動(dòng)點(diǎn),試問(wèn):點(diǎn)P到兩腰的距離之和是否為一定值?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖AB兩側(cè)是兩個(gè)等腰三角形,其中等腰△ABC的底AB是等腰△ABD的腰,
(1)若∠CAD=120°,∠CBD=150°,求∠C,∠D;
(2)若∠CAD=90°,AC=AD,依題意畫(huà)出符合條件的圖形,并求∠C,∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1+1輕巧奪冠·優(yōu)化訓(xùn)練(北京課改版)八年級(jí)數(shù)學(xué)(下) 北京課改版 題型:044

已知等腰△ABC的底邊長(zhǎng)8 cm,腰長(zhǎng)5 cm,一動(dòng)點(diǎn)P在底邊上從B向C以0.25 cm/s的速度運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到PA與腰垂直的位置時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:已知等腰△ABC中,腰AB=AC=13cm,底BC=24cm,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案