12、如圖:已知等腰△ABC中,腰AB=AC=13cm,底BC=24cm,求△ABC的面積.
分析:作BC邊上的高AD,由等腰三角形的性質(zhì),BD=12cm,根據(jù)勾股定理,求得AD的長,再求出△ABC的面積.
解答:解:如圖:作BC邊上的高AD,
∵AB=AC=13cm,底BC=24cm,
∴BD=12cm,∴AD=5cm,
∴S△ABC=24×5÷2=60cm2
點評:本題考查了等腰三角形的性質(zhì)及三角形的面積等知識;解決本題的關鍵是根據(jù)所給條件得到三角形相應的底邊和高的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知等腰△ABC的面積為8cm2,點D,E分別是AB,AC邊的中點,則梯形DBCE的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知等腰三角形ADC,AD=AC,B是線段DC上的一點,連接AB,且有AB=DB.
(1)若△ABC的周長是15厘米,且
AB
AC
=
2
3
,求AC的長;
(2)若
AB
DC
=
1
3
,求tanC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•西藏)如圖,已知等腰△ABC,AC=BC=10,AB=12,以BC為直徑作⊙O交AB點D,交AC于點G,DF⊥AC,垂足為F,交CB的延長線于點E.
(1)求證:直線EF是⊙O的切線;
(2)求sin∠A的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等腰△ABC中,AB=AC,P、Q分別為AC、AB上的點,且AP=PQ=QB=BC,則∠PCQ的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D為△ABC的一個外角∠ABF的平分線上一點,且∠ADC=45°,CD交AB于E,
(1)求證:AD=CD;
(2)求AE的長.

查看答案和解析>>

同步練習冊答案