(2010•臺(tái)灣)如圖所示,△ABC中,∠B=90°,AB=21,BC=20.若有一半徑為10的圓分別與AB、BC相切,則下列何種方法可找到此圓的圓心( )

A.∠B的角平分線與AC的交點(diǎn)
B.AB的中垂線與BC中垂線的交點(diǎn)
C.∠B的角平分線與AB中垂線的交點(diǎn)
D.∠B的角平分線與BC中垂線的交點(diǎn)
【答案】分析:因?yàn)閳A分別與AB、BC相切,所以圓心到AB、CB的距離一定相等,都等于半徑.而到角的兩邊距離相等的點(diǎn)在角的平分線上,圓的半徑為10,所以圓心到AB的距離為10.因?yàn)锽C=20,所以BC的中垂線上的點(diǎn)到AB的距離為10,所以∠B的角平分線與BC的中垂線的交點(diǎn)即為圓心.
解答:解:∵圓分別與AB、BC相切,
∴圓心到AB、CB的距離都等于半徑,
∵到角的兩邊距離相等的點(diǎn)在角的平分線上,
∴圓心定在∠B的角平分線上,
∵因?yàn)閳A的半徑為10,
∴圓心到AB的距離為10,
∵BC=20,
又∵∠B=90°,
∴BC的中垂線上的點(diǎn)到AB的距離為10,
∴∠B的角平分線與BC的中垂線的交點(diǎn)即為圓心.
故選D.
點(diǎn)評(píng):本題考查的是圓的確定,運(yùn)用角平分線的判定和平行線的性質(zhì)來(lái)解題,題目難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年臺(tái)灣省中考數(shù)學(xué)試卷(一)(解析版) 題型:選擇題

(2010•臺(tái)灣)如圖(1),在同一直線,甲自A點(diǎn)開(kāi)始追趕等速度前進(jìn)的乙,且圖(2)表示兩人距離與所經(jīng)時(shí)間的線型關(guān)系.若乙的速率為每秒1.5公尺,則經(jīng)過(guò)40秒,甲自A點(diǎn)移動(dòng)多少公尺( )

A.60
B.61.8
C.67.2
D.69

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年臺(tái)灣省中考數(shù)學(xué)試卷(一)(解析版) 題型:選擇題

(2010•臺(tái)灣)如圖,有一圓內(nèi)接正八邊形ABCDEFGH,若△ADE的面積為10,則正八邊形ABCDEFGH的面積為何( )

A.40
B.50
C.60
D.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年臺(tái)灣省中考數(shù)學(xué)試卷(二)(解析版) 題型:選擇題

(2010•臺(tái)灣)如圖所示,數(shù)在線的A、B、C、D四點(diǎn)所表示的數(shù)分別a、b、20、d.若a、b、20、d為等差數(shù)列,且|a-d|=12,則a值( )

A.11
B.12
C.13
D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年臺(tái)灣省中考數(shù)學(xué)試卷(二)(解析版) 題型:選擇題

(2010•臺(tái)灣)如圖所示是D,E,F(xiàn),G四點(diǎn)在△ABC邊上的位置圖.根據(jù)圖中的符號(hào)和數(shù)據(jù),求x+y之值( )

A.110
B.120
C.160
D.165

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年臺(tái)灣省中考數(shù)學(xué)試卷(二)(解析版) 題型:選擇題

(2010•臺(tái)灣)如圖所示,數(shù)軸上在-2和-1之間的長(zhǎng)度以小隔線分成八等分,A點(diǎn)在其中一隔,則A點(diǎn)表示的數(shù)是( )

A.-1
B.-1
C.-2
D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案