【題目】四邊形ABCD中,AB=BCB=∠C=90°,PBC邊上一點(diǎn),APPD,EAB邊上一點(diǎn),BPE=∠BAP

1 如圖1,若AE=PE,直接寫(xiě)出=______;

2 如圖2,求證:AP=PDPE;

3 如圖3,當(dāng)AE=BP時(shí),連BD,則=______,并說(shuō)明理由.

【答案】1;(2)證明見(jiàn)解析;(3

【解析】

1)首先證明∠PAB=30°,設(shè)PB=a,可得AB=BCa,求出PC即可解決問(wèn)題;

2)如圖2中,延長(zhǎng)DPAB的延長(zhǎng)線于M,作MNDCDC的延長(zhǎng)線于N.首先證明PE=PM,再證明△ABP≌△MNDASA)即可解決問(wèn)題;

3)如圖3,延長(zhǎng)DPAB的延長(zhǎng)線于M,作MNDCDC的延長(zhǎng)線于N.首先證明DN=PB=AE,EB=BM=CN,設(shè)AE=PB=DN=x,EB=BM=CN=y,求出PEBD即可解決問(wèn)題.

1)如圖1

AE=PE,∴∠EAP=EPA

∵∠EPB=PAE,∴∠EPB=PAE=EPA

∵∠B=90°,∴∠PAB+APB=90°,∴3PAE=90°,∴∠PAE=30°.

設(shè)PB=a,則AB=BCa,∴PC=BCPBaa,∴1

故答案為:

2)如圖2,延長(zhǎng)DPAB的延長(zhǎng)線于M,作MNDCDC的延長(zhǎng)線于N

APDM,∴∠APM=PBM=90°.

∵∠PAE+APB=90°,∠APB+BPM=90°,∴∠PAE=BPM

∵∠EPB=PAE,∴∠EPB=BPM

∵∠EPB+PEB=90°,∠BPM+PMB=90°,∴∠PEB=PMB,∴PE=PM

∵∠CBM=BCN=N=90°,∴四邊形BCNM是矩形,∴BC=MN=ABBCMN,∴∠DMN=BPM=PAB

∵∠ABP=N=90°,∴△ABP≌△MNDASA),∴PA=DM

DM=DP+PM=DP+PE,∴PA=DP+PE

3)如圖3,延長(zhǎng)DPAB的延長(zhǎng)線于M,作MNDCDC的延長(zhǎng)線于N

由(2)可知:PE=PM,△ABP≌△MND,四邊形BCNM是矩形,∴PB=DN,設(shè)PB=DN=x,∴AE=PB=DN=x

PE=PM,PBEM,∴EB=BM

BM=CN,∴BE=BM=CN,設(shè)BE=BM=CN=y,則CD=xy,BC=AB=x+y

RtPBE中,PE.在RtDCB中,BD,∴

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店欲購(gòu)進(jìn) A、B 兩種商品,若購(gòu)進(jìn) A 種商品 5 件和 B 種商品 4 件需 300 元;購(gòu)進(jìn) A 種商品 6 件和 B 種商 品 8 件需 440 元.

1)求 A、B 兩種商品每件的進(jìn)價(jià)分別為多少元?

2)若該商店每銷(xiāo)售 1A 種商品可獲利 8 元,每銷(xiāo)售 1B 種商品可獲利 6 元,該商店準(zhǔn)備購(gòu)進(jìn) A、B 兩種商 品共 50 件,且這兩種商品全部售出后總獲利超過(guò) 344 元,則至少購(gòu)進(jìn)多少件 A 商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某茶葉專(zhuān)賣(mài)店經(jīng)銷(xiāo)一種日照綠茶,每千克成本元,據(jù)銷(xiāo)售人員調(diào)查發(fā)現(xiàn),每月的銷(xiāo)售量(千克)與銷(xiāo)售單價(jià)(元/千克)之間存在如圖所示的變化規(guī)律.

求每月銷(xiāo)售量與銷(xiāo)售單價(jià)之間的函數(shù)關(guān)系式.

若某月該茶葉點(diǎn)銷(xiāo)售這種綠茶獲得利潤(rùn)元,試求該月茶葉的銷(xiāo)售單價(jià)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,ACB=90°,AC=6cm,BC=8cm,點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動(dòng);點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的速度勻速移動(dòng).點(diǎn)P、Q分別從起點(diǎn)同時(shí)出發(fā),移動(dòng)到某一位置時(shí)所需時(shí)間為t秒.

(1)當(dāng)t=2時(shí),求線段PQ的長(zhǎng)度;

(2)當(dāng)t為何值時(shí),PCQ的面積等于5cm2?

(3)在P、Q運(yùn)動(dòng)過(guò)程中,在某一時(shí)刻,若將PQC翻折,得到EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖像如圖所示.

1)當(dāng)時(shí),說(shuō)明這個(gè)二次函數(shù)的圖像與x軸必有兩個(gè)交點(diǎn);

2)如圖情況下,若,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4x軸、y軸分別交于點(diǎn)A,點(diǎn)B、點(diǎn)Dy軸的負(fù)半軸上,若將△OAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處。

1)求AB的長(zhǎng)。

2)求點(diǎn)C和點(diǎn)D的坐標(biāo)。

3y軸上是否存在一點(diǎn)P,SPAB= SOCD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為30米的籬笆圍成,已知墻長(zhǎng)為18.設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x

1)用含x的代數(shù)式表示平行于墻的一邊的長(zhǎng)為____米,.x的取值范圍為____

2)這個(gè)苗圃園的面積為88平方米時(shí),求x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB和△DCE均為等腰三角形,點(diǎn)A、DE在同一條直線上,BCAE相交于點(diǎn)O,連接BE,若∠CAB=CBA=CDE=CED=50°。

1)求證:AD=BE;

2)求∠AEB! 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,∠A=25°,B=40°.

(1)求作:⊙O,使⊙O經(jīng)過(guò)A、C兩點(diǎn),且圓心落在AB邊上;

(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法.)

(2)求證:BC是(1)中所作⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案