【題目】如圖,在函數(shù)的圖象上, 都是等腰直角三角形.斜邊都在軸上(是大于或等于2的正整數(shù)),的坐標(biāo)是______

【答案】

【解析】

過點P1P1Ex軸于點E,過點P2P2Fx軸于點F,過點P3P3Gx軸于點G,根據(jù)P1OA1,P2A1A2,△P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐標(biāo),從而總結(jié)出一般規(guī)律得出點Pn的坐標(biāo).

解:過點P1P1Ex軸于點E,過點P2P2Fx軸于點F,過點P3P3Gx軸于點G

∵△P1OA1是等腰直角三角形,

P1E=OE=A1E=OA1

設(shè)點P1的坐標(biāo)為(a,a),(a0),

將點P1a,a)代入,可得a=1,

故點P1的坐標(biāo)為(11),則OA1=2,

設(shè)點P2的坐標(biāo)為(b+2,b),將點P2b+2,b)代入,可得b=,

故點P2的坐標(biāo)為(,),

A1F=A2F=OA2=OA1+A1A2=,

設(shè)點P3的坐標(biāo)為(c+,c),將點P3c+,c)代入,

可得c=,故點P3的坐標(biāo)為(,),

綜上可得:P1的坐標(biāo)為(11),P2的坐標(biāo)為(),P3的坐標(biāo)為(,),

總結(jié)規(guī)律可得:Pn坐標(biāo)為

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小南利用幾何畫板畫圖,探索結(jié)論,他先畫∠MAN90°,在射線AM上取一點B,在射線AN上取一點C,連接BC,再作點A關(guān)于直線BC的對稱點D,連接AD、BD,得到如圖所示圖形,移動點C,小南發(fā)現(xiàn):當(dāng)ADBC時,∠ABD90°;請你繼續(xù)探索;當(dāng)2ADBC時,∠ABD的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-2x+m-1=0

1)若此方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;

2)當(dāng)RtABC的斜邊長c=,且兩直角邊ab恰好是這個方程的兩個根時,求RtABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊△ABC中,點P是邊BC上一動點(點P不與點B重合),且BPPC,點B關(guān)于直線AP的對稱點為D,連接CDBD

1)依題意補全圖形;

2)若∠BAP=α,則∠BCD=______(用含α的式子表示);

3)過點DDEDC,交直線AP于點E,連接EB、EC,判斷△ABE的面積與△CDE的面積之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.

(1)求證:AC平分∠DAB;

(2)BE=3,CE=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)規(guī)劃在一個長50米,寬30米的矩形場地ABCD上,修建三條同樣寬的道路,使其中兩條與AB平行,另一條與AD平行,其余部分種草,若使每塊草坪面積都為178平方米,設(shè)道路寬度為x米,則(  )

A.502x)(30x)=178×6

B.30×502×30x50x178×6

C.302x)(50x)=178

D.502x)(30x)=178

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB為⊙O的直徑,點C為⊙O上一點,CD平分∠ACB交⊙O于點D,交AB于點E

1)求證:△ABD為等腰直角三角形;

2)如圖2,ED繞點D順時針旋轉(zhuǎn)90°,得到DE′,連接BE′,證明:BE′為⊙O的切線;

3)如圖3,點F為弧BD的中點,連接AF,交BD于點G,若DF1,求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)圖象如圖所示,下列結(jié)論:①abc0;②2a+b0;③ab+c0;④當(dāng)x≠1時,a+bax2+bx;⑤4acb2.其中正確的有( 。﹤

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,雙曲線lyx0)過點A(a,b),B(21)0a2);過點AACx軸,垂足為C

1)求l的解析式;

2)當(dāng)△ABC的面積為2時,求點A的坐標(biāo);

3)點Pl上一段曲線AB(包括A,B兩點)的動點,直線l1ymx+1過點P;在(2)的條件下,若ymx+1具有yx增大而增大的特點,請直接寫出m的取值范圍.(不必說明理由)

查看答案和解析>>

同步練習(xí)冊答案