【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.
(1)求證:AC平分∠DAB;
(2)若BE=3,CE=3,求圖中陰影部分的面積.
【答案】(1)證明見解析;(2)
【解析】
(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;
(2)設(shè)⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進行計算即可.
解:(1)連接OC,如圖,
∵CD與⊙O相切于點E,
∴CO⊥CD,
∵AD⊥CD,
∴AD∥CO,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)設(shè)⊙O半徑為r,
在Rt△OEC中,∵OE2+EC2=OC2,
∴r2+27=(r+3)2,解得r=3,
∴OC=3,OE=6,
∴cos∠COE=,
∴∠COE=60°,
∴S陰影=S△COE﹣S扇形COB=33﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一條直線截三角形的兩邊,若所截得的四邊形對角互補,則稱該直線為三角形第三條邊上的逆平行線.如圖1,DE為△ABC的截線,截得四邊形BCED,若∠BDE+∠C=180°,則稱DE為△ABC邊BC的逆平行線.如圖2,已知△ABC中,AB=AC,過邊AB上的點D作DE∥BC交AC于點E,過點E作邊AB的逆平行線EF,交邊BC于點F.
(1)求證:DE是邊BC的逆平行線.
(2)點O是△ABC的外心,連接CO.求證:CO⊥FE.
(3)已知AB=5,BC=6,過點F作邊AC的逆平行線FG,交邊AB于點G.
①試探索AD為何值時,四邊形AGFE的面積最大,并求出最大值;
②在①的條件下,比較AD+BG______AB大小關(guān)系.(“<、>或=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,過點(﹣4,0),(0,﹣2).
(1)求拋物線的解析式和頂點坐標;
(2)當﹣4<x<4時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)前夕舉行了南通濠河國際龍舟邀請賽,在500米直道競速賽道上,甲、乙兩隊所劃行的路程y(單位:米)與時間t(單位:分)之間的函數(shù)關(guān)系式如圖所示,根據(jù)圖中提供的信息,有下列說法:①甲隊比乙隊提前0.5分到達終點②當劃行1分鐘時,甲隊比乙隊落后50米③當劃行分鐘時,甲隊追上乙隊④當甲隊追上乙隊時,兩隊劃行的路程都是300米其中錯誤的是( 。
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在函數(shù)的圖象上, 都是等腰直角三角形.斜邊都在軸上(是大于或等于2的正整數(shù)),點的坐標是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為△ABC的內(nèi)切圓,D、E、F分別為切點,已知∠C=90°,⊙O半徑長為1cm,BC=3cm,則AD長度為__cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,小王想要了解本小區(qū)居民對“廣場舞”的看法,于是進行了-次抽樣調(diào)查,把居民對“廣場舞”的看法分為四類:
A.非常贊同; B.贊同但要有時間限制; C.無所謂; D.不贊同.
并將調(diào)查結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)①本次被抽查的居民人數(shù)是________人;將條形統(tǒng)計圖補充完整
②圖l中∠α的度數(shù)是________度;該小區(qū)有3000名居民,請估計對“廣場舞”表示贊同(包括A類和B類)的大約有________人.
(2)小王想從甲,乙,丙,丁四位居民中隨機選取兩位了解具體情況,請用列表或畫樹狀圖的方法求出恰好同時選中甲和乙兩位居民的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和3,點D在CE上,且∠A=120°,B,C,G三點在同一直線上,則BD與CF的位置關(guān)系是_____;△BDF的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com