【題目】請閱讀下列材料:
問題:如圖,在正方形和平行四邊形中,點(diǎn),,在同一條直線上,是線段的中點(diǎn),連接,.
探究:當(dāng)與的夾角為多少度時,平行四邊形是正方形?
小聰同學(xué)的思路是:首先可以說明四邊形是矩形;然后延長交于點(diǎn),構(gòu)造全等三角形,經(jīng)過推理可以探索出問題的答案.
請你參考小聰同學(xué)的思路,探究并解決這個問題.
(1)求證:四邊形是矩形;
(2)與的夾角為________度時,四邊形是正方形.
理由:
【答案】(1)詳見解析;(2)90.
【解析】
(1)由正方形ABCD,易得∠EBG=90°,根據(jù)有一個角是直角的平行四邊形是矩形,即可證得四邊形BEFG是矩形;
(2)首先作輔助線:延長GP交DC于點(diǎn)H,根據(jù)正方形與平行四邊形的性質(zhì),利用AAS易得△DHP≌△FGP,則有HP=GP,當(dāng)∠CPG=90°時,利用SAS易證△CPH≌△CPG,根據(jù)全等三角形與正方形的性質(zhì),即可得BG=GF,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得BEFG是菱形,而∠EBG=90°,即得四邊形BEFG是正方形.
(1)∵正方形ABCD中,∠ABC=90°,
∴∠EBG=90°,
∴BEFG是矩形;
(2)90°;
理由:延長GP交DC于點(diǎn)H,
∵正方形ABCD和平行四邊形BEFG中,AB∥DC,BE∥GF,
∴DC∥GF,
∴∠HDP=∠GFP,∠DHP=∠FGP,
∵P是線段DF的中點(diǎn),
∴DP=FP,
∴△DHP≌△FGP,
∴HP=GP,
當(dāng)∠CPG=90°時,∠CPH=∠CPG,
∵CP=CP,
∴△CPH≌△CPG,
∴CH=CG,
∵正方形ABCD中,DC=BC,
∴DH=BG,
∵△DHP≌△FGP,
∴DH=GF,
∴BG=GF,
∴BEFG是菱形,
由(1)知四邊形BEFG是矩形,
∴四邊形BEFG是正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是關(guān)于的二次函數(shù),求:
滿足條件的值;
為何值時,拋物線有最低點(diǎn)?求出這個最低點(diǎn).這時,當(dāng)為何值時,隨的增大而增大?
為何值時,函數(shù)有最大值?最大值是多少?這時,當(dāng)為何值時,隨的增大而減小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國家節(jié)能減排的號召,鼓勵市民節(jié)約用電,我市從2016年7月1日起,居民用電實行“一戶一表”的“階梯電價”,分三個檔次收費(fèi),第一檔是用電量不超過180千瓦時實行“基本電價”,第二、三檔實行“提高電價”,具體收費(fèi)情況見折線圖,請根據(jù)圖象回答下列問題:
(1)當(dāng)用電量是180千瓦時時,電費(fèi)是___元;
(2)“基本電價”是___元/千瓦時;
(3)小明家12月份的電費(fèi)是328.5元,這個月他家用電多少千瓦時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,點(diǎn)是邊上的點(diǎn)(與,兩點(diǎn)不重合),過點(diǎn)作,,分別交,于,兩點(diǎn),下列說法正確的是( )
A. 若,則四邊形是矩形
B. 若垂直平分,則四邊形是矩形
C. 若,則四邊形是菱形
D. 若平分,則四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用若干個形狀、大小完全相同的長方形紙片圍正方形,如圖①是用4個長方形紙片圍成的正方形,其陰影部分的面積為16;如圖②是用8個長方形紙片圍成的正方形,其陰影部分的面積為8;如圖③是用12個長方形紙片圍成的正方形,求其陰影部分的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,.分別是線段,上的點(diǎn),連接,使四邊形為正方形,若點(diǎn)是上的動點(diǎn),連接,將矩形沿折疊使得點(diǎn)落在正方形的對角線所在的直線上,對應(yīng)點(diǎn)為,則線段的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象交x軸于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B,與兩坐標(biāo)軸所圍成的三角形的面積為8,則該函數(shù)的表達(dá)式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com