【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
【答案】
(1)
解:∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為F,
∴∠EAF=∠DAE,AD=AF,
又∵∠BAC=2∠DAE,
∴∠BAC=∠DAF,
∵AB=AC,
∴ ,
∴△ADF∽△ABC
(2)
解:∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為F,
∴EF=DE,AF=AD,
∵α=45°,
∴∠BAD=90°﹣∠CAD,
∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,
∴∠BAD=∠CAF,
在△ABD和△ACF中, ,
∴△ABD≌△ACF(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,
所以,DE2=BD2+CE2
(3)
解:DE2=BD2+CE2還能成立.
理由如下:作點(diǎn)D關(guān)于AE的對稱點(diǎn)F,連接EF、CF,
由軸對稱的性質(zhì)得,EF=DE,AF=AD,
∵α=45°,
∴∠BAD=90°﹣∠CAD,
∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,
∴∠BAD=∠CAF,
在△ABD和△ACF中, ,
∴△ABD≌△ACF(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,
所以,DE2=BD2+CE2.
【解析】(1)根據(jù)軸對稱的性質(zhì)可得∠EAF=∠DAE,AD=AF,再求出∠BAC=∠DAF,然后根據(jù)兩邊對應(yīng)成比例,夾角相等兩三角形相似證明;
。2)根據(jù)軸對稱的性質(zhì)可得EF=DE,AF=AD,再求出∠BAD=∠CAF,然后利用“邊角邊”證明△ABD和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=BD,全等三角形對應(yīng)角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理證明即可;
。3)作點(diǎn)D關(guān)于AE的對稱點(diǎn)F,連接EF、CF,根據(jù)軸對稱的性質(zhì)可得EF=DE,AF=AD,再根據(jù)同角的余角相等求出∠BAD=∠CAF,然后利用“邊角邊”證明△ABD和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=BD,全等三角形對應(yīng)角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理證明即可.本題是相似形綜合題,主要利用了軸對稱的性質(zhì),相似三角形的判定,同角的余角相等的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,此類題目,小題間的思路相同是解題的關(guān)鍵.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解相似三角形的應(yīng)用(測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個鈍角三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“智慧三角形”.如,三個內(nèi)角分別為120°,40°,20°的三角形是“智慧三角形”.如圖,∠MON=60°,在射線OM上找一點(diǎn)A,過點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交射線OB于點(diǎn)C.
(1)∠ABO的度數(shù)為_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求證:△AOC為“智慧三角形”;
(3)當(dāng)△ABC為“智慧三角形”時,求∠OAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某單位職工年齡的頻數(shù)分布直方圖,根據(jù)圖形提供的信息,回答下列問題:
(1)該單位職工的平均年齡為多少?
(2)該單位職工在哪個年齡段的人數(shù)最多?
(3)該單位職工年齡的中位數(shù)在哪個年齡段內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為1,點(diǎn)P為正方形內(nèi)一動點(diǎn),若點(diǎn)M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點(diǎn)N,連結(jié)CM.
(1)如圖一,若點(diǎn)M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點(diǎn)P運(yùn)動過程中,滿足△PBC∽△PAM的點(diǎn)M在AB的延長線上時,AP⊥BN和AM=AN是否成立?(不需說明理由)
②是否存在滿足條件的點(diǎn)P,使得PC= ?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)有場比賽,每場比賽都要分出勝負(fù),每隊(duì)勝一場得分, 負(fù)一場得分,積分超過分才能獲得參賽資格.
(1)已知甲隊(duì)在初賽階段的積分為分,求甲隊(duì)初賽階段勝、負(fù)各多少場;
(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要勝多少場?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市南縣大力發(fā)展農(nóng)村旅游事業(yè),全力打造“洞庭之心濕地公園”,其中羅文村的“花海、涂鴉、美食”特色游享譽(yù)三湘,游人如織.去年村民羅南洲抓住機(jī)遇,返鄉(xiāng)創(chuàng)業(yè),投入20萬元創(chuàng)辦農(nóng)家樂(餐飲+住宿),一年時間就收回投資的80%,其中餐飲利潤是住宿利潤的2倍還多1萬元.
(1)求去年該農(nóng)家樂餐飲和住宿的利潤各為多少萬元?
(2)今年羅南洲把去年的餐飲利潤全部用于繼續(xù)投資,增設(shè)了土特產(chǎn)的實(shí)體店銷售和網(wǎng)上銷售項(xiàng)目.他在接受記者采訪時說:“我預(yù)計(jì)今年餐飲和住宿的利潤比去年會有10%的增長,加上土特產(chǎn)銷售的利潤,到年底除收回所有投資外,還將獲得不少于10萬元的純利潤.”請問今年土特產(chǎn)銷售至少有多少萬元的利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備租用一批汽車,現(xiàn)有甲、乙兩種大客車,甲種客車每輛載客量45人,乙種客車每輛載客量30人,已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760元.
(1)求1輛甲種客車和1輛乙種客車的租金分別是多少元?
(2)學(xué)校計(jì)劃租用甲、乙兩種客車共8輛,送330名師生集體外出活動,最節(jié)省的租車費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,DE⊥AD,交AB于點(diǎn)E,AE為⊙O的直徑
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)將一張長方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.
(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com