【題目】如圖所示,分別切的三邊、、于點、、,若,,.
(1)求的長;
(2)求的半徑長.
【答案】(1)4;(2)2
【解析】
(1)設AD=x,根據切線長定理得到AF=AD,BE=BD,CE=CF,根據關系式列得方程解答即可;
(2)連接OD、OE、OF、OA、OB、OC,將△ABC分為三個三角形:△AOB、△BOC、△AOC,再用面積法求得半徑即可.
解:(1)設 ,
分別切 的三邊 、、 于點 、、,
,
,,,
,,
,
即 ,得 ,
的長為 .
(2)如圖,連接OD、OE、OF、OA、OB、OC,
則OD⊥AB,OE⊥BC,OF⊥AC,且OD=OE=OF=2,
∵,,,
∴AB2+BC2=AC2,
∴△ABC是直角三角形,且∠B是直角,
∴△ABC的面積=,
∴,
∴OD=2,即的半徑長為2.
科目:初中數學 來源: 題型:
【題目】如圖,已知在邊長為4的菱形ABCD中,∠C=60°,E是BC邊上一動點(與點B,C不重合).連接DE,作∠DEF=60°,交AB于點F,設CE=x,△FBE的面積為y.下列圖象中,能大致表示y與x的函數關系的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一幅長60 cm、寬40 cm的長方形風景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖.如果要使整個掛圖的面積是2816 cm2,設金色紙邊的寬為x cm,那么x滿足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“紅燈停,綠燈行”是我們過路口遇見交通信號燈時必須遵守的規(guī)則.小明每天從家騎自行車上學要經過三個路口,假如每個路口交通信號燈中紅燈和綠燈亮的時間相同,且每個路口的交通信號燈只安裝了紅燈和綠燈.那么某天小明從家騎車去學校上學,經過三個路口抬頭看到交通信號燈.
(1)請畫樹狀圖,列舉小明看到交通信號燈可能出現(xiàn)的所有情況;
(2)求小明途經三個路口都遇到紅燈的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com