【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個(gè)動(dòng)點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點(diǎn)D,射線PD交射線CA于點(diǎn)E.
(1)若點(diǎn)E在線段CA的延長(zhǎng)線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
(2)當(dāng)BP=2 時(shí),試說(shuō)明射線CA與⊙P是否相切.
(3)連接PA,若S△APE= S△ABC , 求BP的長(zhǎng).
【答案】
(1)解:過(guò)A作AF⊥BC于F,過(guò)P作PH⊥AB于H,
∵∠BAC=120°,AB=AC=6,
∴∠B=∠C=30°,
∵PB=PD,
∴∠PDB=∠B=30°,CF=ACcos30°=6× =3 ,
∴∠ADE=30°,
∴∠DAE=∠CPE=60°,
∴∠CEP=90°,
∴CE=AC+AE=6+y,
∴PC= = ,
∵BC=6 ,
∴PB+CP=x+ =6 ,
∴y=﹣ x+3,
∵BD=2BH= x<6,
∴x<2 ,
∴x的取值范圍是0<x<2
(2)解:∵BP=2 ,∴CP=4 ,
∴PE= PC=2 =PB,
∴射線CA與⊙P相切
(3)解:當(dāng)D點(diǎn)在線段BA上時(shí),
連接AP,
∵S△ABC= BCAF= ×6 ×3=9 ,
∵S△APE= AEPE= y ×(6+y)= S△ABC= ,
解得:y= ,代入y=﹣ x+3得x=4 ﹣ .
當(dāng)D點(diǎn)BA延長(zhǎng)線上時(shí),
PC= EC= (6﹣y),
∴PB+CP=x+ (6﹣y)=6 ,
∴y= x﹣3,
∵∠PEC=90°,
∴PE= = = (6﹣y),
∴S△APE= AEPE= x= y (6﹣y)= S△ABC= ,
解得y= 或 ,代入y= x﹣3得x=3 或5 .
綜上可得,BP的長(zhǎng)為4 ﹣ 或3 或5 .
【解析】(1)過(guò)A作AF⊥BC于F,過(guò)P作PH⊥AB于H,根據(jù)等腰三角形的性質(zhì)得到CF=ACcos30°=6× =3 ,推出∠CEP=90°,求得CE=AC+AE=6+y,列方程PB+CP=x+ =6 ,于是得到y(tǒng)=﹣ x+3,根據(jù)BD=2BH= x<6,即可得到結(jié)論;(2)根據(jù)已知條件得到PE= PC=2 =PB,于是得到射線CA與⊙P相切;(3)D在線段BA上和延長(zhǎng)線上兩種情況,根據(jù)三角形的面積列方程即可得到結(jié)果.本題考查了直線與圓的位置關(guān)系,等腰三角形的性質(zhì),直角三角形的性質(zhì),三角形面積的計(jì)算,求一次函數(shù)的解析式,證得PE⊥AC是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度一半的長(zhǎng)為半徑作弧,相交于點(diǎn)E,F(xiàn),過(guò)點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連結(jié)CD,則CD的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的和是( )
A.6
B.2 +1
C.9
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B分別在x軸,y軸上,點(diǎn)A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動(dòng)一周,同時(shí)另一端點(diǎn)Q隨之在x軸的非負(fù)半軸上運(yùn)動(dòng),如果PQ= ,那么當(dāng)點(diǎn)P運(yùn)動(dòng)一周時(shí),點(diǎn)Q運(yùn)動(dòng)的總路程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,長(zhǎng)方形的兩邊長(zhǎng)分別為m+3,m+13;如圖2的長(zhǎng)方形的兩邊長(zhǎng)分別為m+5,m+7.(其中m為正整數(shù))
(1)寫(xiě)出兩個(gè)長(zhǎng)方形的面積S1,S2,并比較S1,S2的大小;
(2)現(xiàn)有一個(gè)正方形的周長(zhǎng)與圖1中的長(zhǎng)方形的周長(zhǎng)相等.試探究該正方形的面積與長(zhǎng)方形的面積的差是否是一個(gè)常數(shù),如果是,求出這個(gè)常數(shù);如果不是,說(shuō)明理由.
(3)在(1)的條件下,若某個(gè)圖形的面積介于S1,S2之間(不包括S1,S2)且面積為整數(shù),這樣的整數(shù)值有且只有19個(gè),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列算式
① =±3;② =9;③26÷23=4;④ =2016;⑤a+a=a2 .
運(yùn)算結(jié)果正確的概率是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】銳銳參加我市電視臺(tái)組織的“牡丹杯”智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān),第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題銳銳都不會(huì),不過(guò)銳銳還有兩個(gè)“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關(guān)的概率是 .
(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關(guān)的概率是 .
(3)如果銳銳將每道題各用一次“求助”,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析他順序通關(guān)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)感知:如圖①.AB=AD,AB⊥AD,BF⊥AF于點(diǎn)F,DG⊥AF于點(diǎn)G.求證:△ADG≌△BAF;
(2)拓展:如圖②,點(diǎn)B,C在∠MAN的邊AM,AN上,點(diǎn)E,F(xiàn)在∠MAN在內(nèi)部的射線AD上,∠1,∠2分別是△ABE,△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)應(yīng)用:如圖③,在△ABC中,AB=AC,AB>BC,點(diǎn)在D邊BC上,CD=2BD,點(diǎn)E,F(xiàn)在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為12,則△ABE與△CDF的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請(qǐng)?jiān)诰W(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對(duì)稱(chēng)圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com