【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長.
【答案】(1)見解析;(2) .
【解析】
(1)利用等腰三角形的性質及正方形的性質可求得∠A=∠CDG,∠DEA=∠C,則可證得△AED∽△DCG;
(2)設AE=x,利用矩形的性質及等腰三角形的性質可求得BF=FG=DE=AE=x,從而可表示出EF,結合矩形的面積可得到關于x的方程,則可求得x的值,即可求得AE的長.
(1)證明:∵△ABC是等腰直角三角形,∠C=90°,
∴∠B=∠A=45°,
∵四邊形DEFG是矩形,
∴∠AED=∠DEF=90°,DG∥AB,
∴∠CDG=∠A,
∵∠C=90°,
∴∠AED=∠C,
∴△AED∽△DCG;
(2)設AE的長為x,
∵等腰Rt△ABC中,∠C=90°,AC=4,
∴∠A=∠B=45°,AB=4,
∵矩形DEFG的面積為4,
∴DEFE=4,∠AED=∠DEF=∠BFG=90°,
∴BF=FG=DE=AE=x,
∴EF=4-2x,
即x(4-2x)=4,
解得x1=x2=.
∴AE的長為.
科目:初中數學 來源: 題型:
【題目】有一塊面積為100cm2的正方形紙片.
(1)該正方形紙片的邊長為 cm(直接寫出結果);
(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個學校樂團,決定向某服裝廠購買同樣的演出服。下面是服裝廠給出的演出服裝的價格表:經調查:兩個樂團共75人(甲樂團人數不少于40人),如果分別各自購買演出服,按每人一套的標準兩個樂團共需花費5600元。請回答以下問題:
購買服裝的套數 | 1~39套(含39套) | 40~79套(含79套) | 80套及以上 |
每套服裝的價格 | 80元 | 70元 | 60元 |
(1)如果甲、乙兩個樂團聯合起來購買服裝,那么比各自購買服裝最多可以節(jié)省多少元?
(2)甲、乙兩個樂團各有多少人?
(3)現從甲樂團抽調a人,從乙樂團抽調b人(要求從每個樂團抽調的人數不少于5人),去兒童福利院獻愛心演出,并在演出后每位樂團成員向兒童們進行“心連心活動”;甲樂團每位成員負責3位小朋友,乙樂團每位成員負責5位小朋友,這樣恰好使得福利院65位小朋友全部得到“心連心活動”的溫暖。請寫出所有的抽調方案,并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形的面積為28,對角線交于點;以、為鄰邊作平行四邊形,對角線交于點;以、為鄰邊作平行四邊形;…依此類推,則平行四邊形的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們把橫 、縱坐標都是整數的點叫做整點.已知點
A(0,4),點B是軸正半軸上的整點,記△AOB內部(不包括邊界)的整點個數為m.當m=3時,點B的橫坐標的所有可能值是 ▲ ;當點B的橫坐標為4n(n為正整數)時,m= (用含n的代數式表示.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的袋中裝有5個黃球、13個黑球和22個紅球,這些球除顏色外其他都相同.
(1)求從袋中摸出一個球是黃球的概率;
(2)求從袋中摸出一個球不是紅球的概率;
(3)現在從袋中取出若干個黑球,并放入相同數量的黃球,攪拌均勻后,若從袋中摸出一個球是黃球的概率為,則取出了多少個黑球?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com