在平面直角坐標(biāo)系中,矩形OABC過原點(diǎn)O,且A(0,2)、C(6,0),∠AOC的平分線交AB于點(diǎn)D.
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)如圖,點(diǎn)P從點(diǎn)O出發(fā),以每秒個(gè)單位長度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為秒.

①當(dāng)t為何值時(shí),△OPQ的面積等于1;
②當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)已知過O、P、Q三點(diǎn)的拋物線解析式為y=-(x-t)2+t(t>0).問是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請(qǐng)說明理由.
(1)(6,2);(2)1,當(dāng)t=2或t=5+或t=5-;(3)t1=,t2=2.

試題分析:(1)根據(jù)題意知B點(diǎn)坐標(biāo)為(6,2);
(2)①可設(shè)t秒后△OPQ的面積等于1,則有P(,t)Q(2t,0),根據(jù)三角形的面積即可計(jì)算出t的值;
②要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°,進(jìn)而利用勾股定理分別分析得出PB2=(6-t)2+(2-t)2,QB2=(6-2t)2+22,PQ2=(2t-t)2+t2=2t2,再分別就∠PQB=90°和∠PBQ=90°討論,求出符合題意的t值即可;
(3)存在這樣的t值,若將△PQB繞某點(diǎn)旋轉(zhuǎn)180°,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在拋物線上,則旋轉(zhuǎn)中心為PQ中點(diǎn),此時(shí)四邊形PBQB′為平行四邊形,根據(jù)平行四邊形的性質(zhì)和對(duì)稱性可求出t的值.
試題解析:(1)根據(jù)題意知B點(diǎn)坐標(biāo)為(6,2);
(2)①設(shè)t秒后△OPQ的面積等于1,則有P(,t)Q(2t,0),則有:
×t×2t=1
解得:t=1或-1(舍去)
故1秒后△OPQ的面積等于1
②要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°.
如圖1,作PG⊥OC于點(diǎn)G,在Rt△POG中,

∵∠POQ=45°,∴∠OPG=45°,
∵OP=t,∴OG=PG=t,
∴點(diǎn)P(t,t)
又∵Q(2t,0),B(6,2),
根據(jù)勾股定理可得:PB2=(6-t)2+(2-t)2,QB2=(6-2t)2+22,PQ2=(2t-t)2+t2=2t2,
①若∠PQB=90°,則有PQ2+BQ2=PB2,
即:2t2+[(6-2t)2+22]=(6-t)2+(2-t)2
整理得:4t2-8t=0,
解得:t1=0(舍去),t2=2,
∴t=2,
②若∠PBQ=90°,則有PB2+QB2=PQ2
∴[(6-t)2+(2-t)2]+[(6-2t)2+22]=2t2,
整理得:t2-10t+20=0,
解得:t=5±
∴當(dāng)t=2或t=5+或t=5-時(shí),△PQB為直角三角形.
(3)存在這樣的t值,理由如下:
將△PQB繞某點(diǎn)旋轉(zhuǎn)180°,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在拋物線上,
則旋轉(zhuǎn)中心為PQ中點(diǎn),此時(shí)四邊形PBQB′為平行四邊形.
∵PO=PQ,由P(t,t),Q(2t,0),知旋轉(zhuǎn)中心坐標(biāo)可表示為(t,t),
∵點(diǎn)B坐標(biāo)為(6,2),∴點(diǎn)B′的坐標(biāo)為(3t-6,t-2),
代入y=-(x-t)2+t,得:2t2-13t+18=0,
解得:t1=,t2=2.
考點(diǎn): 二次函數(shù)綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店進(jìn)了一批服裝,每件成本50元,如果按每件60元出售,可銷售800件,如果每件提價(jià)5元出售,其銷量將減少100件。
(1)求售價(jià)為70元時(shí)的銷售量及銷售利潤;
(2)求銷售利潤y(元)與售價(jià)x(元)之間的函數(shù)關(guān)系,并求售價(jià)為多少元時(shí)獲得最大利潤;
(3)如果商店銷售這批服裝想獲利12000元,那么這批服裝的定價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線軸的交點(diǎn)為,則下列說法不正確的是(  )
A.拋物線開口向上B.拋物線的對(duì)稱軸是
C.當(dāng)時(shí),的最大值為D.拋物線與軸的交點(diǎn)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=x2+bx+c圖象向右平移2個(gè)單位再向下平移3個(gè)單位,所得圖象的解析式為y=x2﹣2x﹣3,則b、c的值為(  )
A.b="2,c=2" B.b=2,c=0
C.b=﹣2,c=﹣1D.b=﹣3,c="2"

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圓,M為圓心。

⑴求拋物線的解析式;
⑵求陰影部分的面積;
⑶在正半軸上有一點(diǎn)P,作PQ⊥x軸交BC于Q,設(shè)PQ=K,△CPQ的面積為S,求S關(guān)于K的函數(shù)關(guān)系式,并求出S的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角梯形中, , 高(如圖1). 動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā), 點(diǎn)沿運(yùn)動(dòng)到點(diǎn)停止, 點(diǎn)沿運(yùn)動(dòng)到點(diǎn)停止,兩點(diǎn)運(yùn)動(dòng)時(shí)的速度都是1cm/s,而當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)正好到達(dá)點(diǎn). 設(shè)同時(shí)從點(diǎn)出發(fā),經(jīng)過的時(shí)間為(s)時(shí), 的面積為 (如圖2). 分別以為橫、縱坐標(biāo)建立直角坐標(biāo)系, 已知點(diǎn)邊上從運(yùn)動(dòng)時(shí), 的函數(shù)圖象是圖3中的線段.

(圖1)                      (圖2)                (圖3)
(1)分別求出梯形中的長度;
(2)分別寫出點(diǎn)邊上和邊上運(yùn)動(dòng)時(shí), 的函數(shù)關(guān)系式(注明自變量的取值范圍), 并在圖3中補(bǔ)全整個(gè)運(yùn)動(dòng)中關(guān)于的函數(shù)關(guān)系的大致圖象.
(3)問:是否存在這樣的t,使PQ將梯形ABCD的面積恰好分成1:6的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于拋物線y=(x+1)2+3,下列結(jié)論:①拋物線的開口向下;②對(duì)稱軸為直線x=1;③頂點(diǎn)坐標(biāo)為(﹣1,3);④x>﹣1時(shí),y隨x的增大而減小,其中正確結(jié)論的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y=a-3x+1與x軸有交點(diǎn),則a的取值范圍是(  。
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知反比例函數(shù)的圖象如右圖所示,則二次函數(shù)的圖象大致為

查看答案和解析>>

同步練習(xí)冊(cè)答案