某商店進了一批服裝,每件成本50元,如果按每件60元出售,可銷售800件,如果每件提價5元出售,其銷量將減少100件。
(1)求售價為70元時的銷售量及銷售利潤;
(2)求銷售利潤y(元)與售價x(元)之間的函數(shù)關系,并求售價為多少元時獲得最大利潤;
(3)如果商店銷售這批服裝想獲利12000元,那么這批服裝的定價是多少元?
(1)600,12000;(2)y=-20(x-75)2+12500,75;(3)70元或80元.

試題分析:此題應明確公式:銷售利潤=銷售量×(售價-成本),求售價為多少元時獲得最大利潤,需考慮二次函數(shù)最值問題.
試題解析:(1)銷售量為800-20×(70-60)=600(件),
600×(70-50)=600×20=12000(元)
(2)y=(x-50)[800-20(x-60)]=-20x2+3000x-100000,
=-20(x-75)2+12500,
所以當銷售價為75元時獲得最大利潤為12500元.
(3)當y=12000時,
-20(x-75)2+12500=12000,
解得x1=70,x2=80,
即定價為70元或80元時這批服裝可獲利12000元.
考點: 二次函數(shù)的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點, A點在原點的左側,B點的坐標為(,),與y軸交于C(,)點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數(shù)的表達式.
(2)連結PO、PC,并把△POC沿CO翻折,得到四邊形POP’C,那么是否存在點P,使四邊形POP’C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形 ABPC的面積最大并求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某個體戶春節(jié)前代理銷售某種品牌的酒,已知進價為每件40元,生產(chǎn)廠家要求銷售價不少于40元,且不大于70元,市場調(diào)查發(fā)現(xiàn):若每件以50元銷售,平均每天可銷售90件,價格每降低1元,平均每天多銷售3件,價格每升高1元,平均每天少銷售3件.
(1)寫出平均每天銷售量y(件)與每件銷售價x(元)之間的函數(shù)關系式,并注明自變量的取值范圍;
(2)求出該個體戶每天銷售這種酒的毛利潤W(元)與每件酒的售價x(元)之間的函數(shù)關系式,并注明自變量的取值范圍(每件的毛利潤=售價-進價);
(3)當酒的售價為多少時平均每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=ax2+1與雙曲線y=的交點A的橫坐標是2,則關于x的不等式+ax2+1<0的解集是              

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某區(qū)政府大力扶持大學生創(chuàng)業(yè).李剛在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=-10x+500.
(1)設李剛每月獲得利潤為w(元),當銷售單價定為每臺多少元時,每月可獲得最大利潤?
(2)如果李剛想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李剛想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=x2通過平移得到拋物線m,拋物線m經(jīng)過點B(6,0)和O(0,0),它的頂點為A,以O為圓心,OA為半徑作圓,在第四象限內(nèi)與拋物線y=x2交于點C,連接AC,則圖中陰影部分的面積為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,拋物線的頂點是點P,對稱軸與x軸相交于點Q,以點P為圓心,PQ長為半徑畫⊙P,那么下列判斷正確的是(    )
A.x軸與⊙P相離;B.x軸與⊙P相切;
C.y軸與⊙P與相切;D.y軸與⊙P相交.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,矩形OABC過原點O,且A(0,2)、C(6,0),∠AOC的平分線交AB于點D.
(1)直接寫出點B的坐標;
(2)如圖,點P從點O出發(fā),以每秒個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿軸正方向移動.設移動時間為秒.

①當t為何值時,△OPQ的面積等于1;
②當t為何值時,△PQB為直角三角形;
(3)已知過O、P、Q三點的拋物線解析式為y=-(x-t)2+t(t>0).問是否存在某一時刻t,將△PQB繞某點旋轉180°后,三個對應頂點恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖,①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1),其中結論正確的有( 。
A.③④B.③⑤C.③④⑤D.②③④⑤

查看答案和解析>>

同步練習冊答案