分析 (1)根據(jù)平移的條件畫(huà)出圖形即可.
(2)線段AE還可以繞正方形對(duì)角線的交點(diǎn)旋轉(zhuǎn)180o得到線段CF;只要證明四邊形AECF是平行四邊形即可解決問(wèn)題.
(3)作EH⊥AB于H.則四邊形ADEH是矩形,在Rt△EHF中,根據(jù)EF=$\sqrt{E{H}^{2}+H{F}^{2}}$,求出EH,HF即可.
解答 解(1)線段CF如圖所示,
(2)線段AE還可以繞正方形對(duì)角線的交點(diǎn)旋轉(zhuǎn)180o得到線段CF;
理由:∵AE=CF,AE∥CF,
∴四邊形AECF是平行四邊形,連接AC、EF交于點(diǎn)O,
∴OA=OC,
∵四邊形AECF是中心對(duì)稱圖形,
∴線段AE還可以繞正方形對(duì)角線的交點(diǎn)O旋轉(zhuǎn)180o得到線段CF.
(3)作EH⊥AB于H.則四邊形ADEH是矩形,AH=DE=$\sqrt{A{E}^{2}-A{D}^{2}}$=5,EC=AF=7,
在Rt△EHF中,∵EH=AD=12,HF=AF-AH=CE-DE=7-5=2,
∴EF=$\sqrt{E{H}^{2}+H{F}^{2}}$=$\sqrt{1{2}^{2}+{2}^{2}}$=$2\sqrt{37}$.
點(diǎn)評(píng) 本題考查正方形的性質(zhì)、平移變換、旋轉(zhuǎn)變換、勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)添加常用輔助線構(gòu)造特殊三角形,屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a2=(-a)2 | B. | a3=(-a)3 | C. | a2=|a|2 | D. | a3=-|a|3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (5,2) | B. | (2,5) | C. | (2,-5) | D. | (5,-2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 55° | B. | 65° | C. | 135° | D. | 45° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com