【題目】如圖,點是二次函數(shù)圖像上的任意一點,點在軸上.
(1)以點為圓心,長為半徑作.
①直線經(jīng)過點且與軸平行,判斷與直線的位置關(guān)系,并說明理由.
②若與軸相切,求出點坐標;
(2)、、是這條拋物線上的三點,若線段、、的長滿足,則稱是、的和諧點,記做.已知、的橫坐標分別是,,直接寫出的坐標_______.
【答案】(1)①與直線相切.理由見解析;②或;(2)或.
【解析】
(1)①作直線的垂線,利用兩點之間的距離公式及二次函數(shù)圖象上點的特征證明線段相等即可;
②利用兩點之間的距離公式及二次函數(shù)圖象上點的特征構(gòu)建方程即可求得答案.
(2)利用兩點之間的距離公式分別求得各線段的長,根據(jù)“和諧點”的定義及二次函數(shù)圖象上點的特征構(gòu)建方程即可求得答案.
(1)①與直線相切.
如圖,過作直線,垂足為,設(shè).
則,
,即:
與直線相切.
②當與軸相切時
∴ ,
,即:
代入
化簡得:或.
解得:,.
或.
(2)已知、的橫坐標分別是,,代入二次函數(shù)的解析式得:
,,
設(shè),
∵點B的坐標為,
∴,
,
,
依題意得:,即,
,即:,
∴(不合題意,舍去)或,
把,代入得:
直接開平方解得:,,
∴的坐標為:或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(-2,4),B(4,4),C(6,0).
(1)△ABC的面積是 .
(2)請以原點O為位似中心,畫出△A'B'C',使它與△ABC的相似比為1:2,變換后點A、B的對應(yīng)點分別為點A'、B',點B'在第一象限;
(3)若P(a,b)為線段BC上的任一點,則變換后點P的對應(yīng)點P' 的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.
(1)求證:DE是⊙O的切線;
(2)當⊙O半徑為3,CE=2時,求BD長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,以AB上一點O為圓心,OA為半徑的圓與BC相切于點D,分別交AB,AC于點E,F.
(1)如圖①,連接AD,若∠CAD=25°,求∠B的大小;
(2)如圖②,若點F為弧AD的中點,⊙O的半徑為2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知的半徑為5,圓心的坐標為,交軸于點,交軸于,兩點,點是上的一點(不與點、、重合),連結(jié)并延長,連結(jié),,.
(1)求點的坐標;
(2)當點在上時.
①求證:;
②如圖2,在上取一點,使,連結(jié).求證:;
(3)如圖3,當點在上運動的過程中,試探究的值是否發(fā)生變化?若不變,請直接寫出該定值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c=0的兩個非零實數(shù)根分別為x1,x2,則x1+x2=﹣,x1x2=.
解決下列問題:已知關(guān)于x的一元二次方程(x+n)2=6x有兩個非零不等實數(shù)根x1,x2,設(shè)m=,
(Ⅰ)當n=1時,求m的值;
(Ⅱ)是否存在這樣的n值,使m的值等于?若存在,求出所有滿足條件的n的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點D,點E為弧AD的中點,連接CE交AB于點F,且BF=BC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線,其頂點為A.
(1)寫出這條拋物線的開口方向、頂點A的坐標,并說明它的變化情況;
(2)直線BC平行于x軸,交這條拋物線于B、C兩點(點B在點C左側(cè)),且,求點B坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:四邊形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com