【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F.
(1)求證:四邊形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面積.
【答案】(1)詳見解析;(2)24
【解析】
(1)可先證得△AEF≌△DEB,可求得AF=DB,可證得四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可求得AD=CD,可證得結(jié)論;
(2)將菱形ADCF的面積轉(zhuǎn)換成△ABC的面積,再用S△ABC的面積=ABAC,結(jié)合條件可求得答案.
(1)證明:∵E是AD的中點(diǎn)
∴AE=DE
∵AF∥BC
∴∠AFE=∠DBE
在△AEF和△DEB中
∴△AEF≌△DEB(AAS)
∴AF=DB
∵D是BC的中點(diǎn)
∴BD=CD=AF
∴四邊形ADCF是平行四邊形
∵∠BAC=90°,
∴AD=CD=BC
∴四邊形ADCF是菱形;
(2)解:設(shè)AF到CD的距離為h,
∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8
∴S菱形ADCF=CDh=BCh=S△ABC=ABAC=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,1),對角線BD與x軸平行,若直線y=kx+5+2k(k≠0)與菱形ABCD有交點(diǎn),則k的取值范圍是( )
A.B.
C.D.﹣2≤k≤2且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAD,且交BF于點(diǎn)C,BD平分∠ABC,且交AE于點(diǎn)D,連接CD,求證:
(1)AC⊥BD;
(2)四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校提倡練字,小冬和小紅一起去文具店買鋼筆和字帖,小冬在文具店買1支鋼筆和3本字帖共花了38元,小紅買了2支鋼筆和4本字帖共花了64元.
(1)每支鋼筆與每本字帖分別多少元?
(2)帥帥在六一節(jié)當(dāng)天去買,正巧碰到文具店搞促銷,促銷方案有兩種形式:
①所購商品均打九折
②買一支鋼筆贈送一本字帖
帥帥要買5支鋼筆和15本字帖,他有三種選擇方案:
(Ⅰ)一次買5支鋼筆和15本字帖,然后按九折付費(fèi);
(Ⅱ)一次買5支鋼筆和10本字帖,文具店再贈送5本字帖;
(Ⅲ)分兩次購買,第一次買5支鋼筆,文具店會贈送5本字帖,第二次再去買10本字帖,可以按九折付費(fèi);問帥帥最少要付多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知B,C,E三點(diǎn)在同一條直線上,△ABC與△DCE都是等邊三角形,其中線段BD交AC于點(diǎn)G,線段AE交CD于點(diǎn)F.求證:(1)△ACE≌△BCD;(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某織布廠有150名工人,為了提高經(jīng)濟(jì)效益,增設(shè)制衣項(xiàng)目,已知每人每天能織布30m,或利用所織布制衣4件,制衣一件需要布1.5m,將布直接出售,每米布可獲利2元,將布制成衣后出售,每件可獲利25元,若每名工人每天只能做一項(xiàng)工作,且不計(jì)其他因素,設(shè)安排x名工人制衣.
(1)一天中制衣所獲利潤P是多少(用含x的式子表示);
(2)一天中剩余布所獲利潤Q是多少 (用含x的式子表示);.
(3)一天當(dāng)中安排多少名工人制衣時,所獲利潤為11806元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)將△ADF繞著點(diǎn)A順時針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O,⊙O與AC相切于點(diǎn)D,BE⊥AB交AC的延長線于點(diǎn)E,與⊙O相交于G,F兩點(diǎn).
(1)求證:AB與⊙O相切;
(2)若AB=4,求線段GF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com