【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設這批淡水魚放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗可知:m與t的函數(shù)關系為;y與t的函數(shù)關系如圖所示.
①分別求出當0≤t≤50和50<t≤100時,y與t的函數(shù)關系式;
②設將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
【答案】(1)a的值為0.04,b的值為30;(2)①;②放養(yǎng)55天時,W最大,最大值為180250元.
【解析】試題分析:(1)由放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元可得答案;
(2)①分0≤t≤50、50<t≤100兩種情況,結合函數(shù)圖象利用待定系數(shù)法求解可得;
②就以上兩種情況,根據(jù)“利潤=銷售總額﹣總成本”列出函數(shù)解析式,依據(jù)一次函數(shù)性質(zhì)和二次函數(shù)性質(zhì)求得最大值即可得.
試題解析:(1)由題意,得:,解得:,答:a的值為0.04,b的值為30;
(2)①當0≤t≤50時,設y與t的函數(shù)解析式為y=kt+n,將(0,15)、(50,25)代入,得:,解得:,∴y與t的函數(shù)解析式為;
當50<t≤100時,設y與t的函數(shù)解析式為y=at+b,將點(50,25)、(100,20)代入,得:,解得:,∴y與t的函數(shù)解析式為y=﹣t+30;
綜上所述: ;
②由題意,當0≤t≤50時,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴當t=50時,W最大值=180000(元);
當50<t≤100時,W=(100t+15000)(﹣t+30)﹣(400t+300000)
=﹣10t2+1100t+150000
=﹣10(t﹣55)2+180250,∵﹣10<0,∴當t=55時,W最大值=180250(元).
綜上所述,放養(yǎng)55天時,W最大,最大值為180250元.
科目:初中數(shù)學 來源: 題型:
【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】文美書店決定用不多于20000元購進甲乙兩種圖書共1200本進行銷售.甲、乙兩種圖書的進價分別為每本20元、14元,甲種圖書每本的售價是乙種圖書每本售價的1.4倍,若用1680元在文美書店可購買甲種圖書的本數(shù)比用1400元購買乙種圖書的本數(shù)少10本.
(1)甲乙兩種圖書的售價分別為每本多少元?
(2)書店為了讓利讀者,決定甲種圖書售價每本降低3元,乙種圖書售價每本降低2元,問書店應如何進貨才能獲得最大利潤?(購進的兩種圖書全部銷售完.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與思考:利用多項式的乘法法則,可以得到,反過來,則有利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式。例如:將式子分解因式.這個式子的常數(shù)項,一次項系數(shù),所以.
解:.
上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如圖).
請仿照上面的方法,解答下列問題:
(1)分解因式:;
(2)分解因式:;
(3)若可分解為兩個一次因式的積,寫出整數(shù)P的所有可能值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O.下列條件不能判定四邊形ABCD為平行四邊形的是( 。
A. AB∥CD,AD∥BCB. OA=OC,OB=OD
C. AB=CD,AD=BCD. AB∥CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)教研部門對本區(qū)初二年級的學生進行了一次隨機抽樣問卷調(diào)查,其中有這樣一個問題:老師在課堂上放手讓學生提問和表達( )
A.從不 B.很少 C.有時 D.常常 E.總是
答題的學生在這五個選項中只能選擇一項.下面是根據(jù)學生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級的學生參加了本次問卷調(diào)查;
(2)請把這幅條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“總是”的圓心角為 .(精確到度)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代偉大的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的就用了這種分割方法,若BD=2,AE=3,則正方形ODCE的邊長等于________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學完“數(shù)據(jù)的收集、整理與描述”后,李明對本班期中考試數(shù)學成績(成績均為整數(shù),滿分為150分)作了統(tǒng)計分析(每個人的成績各不相同,且最低分為50分),繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(為避免分數(shù)出現(xiàn)在分組的端點處,李明將分點取小數(shù)),請你根據(jù)圖表提供的信息,解答下列問題:
分組 | 頻數(shù) | 頻率 |
49.5~69.5 | 2 | 0.04 |
69.5~89.5 | 8 | |
89.5~109.5 | 20 | 0.40 |
109.5~129.5 | 0.32 | |
129.5~150.5 | 4 | 0.08 |
合計 | 1 |
(1)分布表中______,______,______;
(2)補全頻數(shù)分布直方圖;
(3)若畫該班期中考試數(shù)學成績的扇形統(tǒng)計圖,則分數(shù)在89.5~109.5之間的扇形圓心角的度數(shù)是____;
(4)張亮同學成績?yōu)?/span>109分,他說:“我們班上比我成績高的人還有,我要繼續(xù)努力.”他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某個大型商場的自動扶梯側面示意圖,已知自動扶梯AC的坡度為1:2,AC的長度為5米,AB為底樓地面,CD為二樓側面,EF為二樓樓頂,當然有EF∥AB∥CD,E為自動扶梯AC的最高端C的正上方,過C的直線EG⊥AB于G,在自動扶梯的底端A測得E的仰角為42°,求該商場二樓的樓高CE.
(參考數(shù)據(jù):sin42°=,cos42°=,tan42°=)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com