【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個不相等的實(shí)數(shù)根,求k的取值范圍.
【答案】(1)x=1或x=3是方程ax2+bx+c=0的兩個根;(2)l<x<3;(3)當(dāng)x>2時,y隨x的增大而減小;(4)k<2.
【解析】試題分析:(1)觀察圖形可以看出拋物線與x軸交于(1,0)和(3,0),即可解題
(2)根據(jù)拋物線y=ax2+bx+c,求得y>0的x取值范圍即可解題;
(3)圖中可以看出拋物線對稱軸,即可解題;
(3)易求得拋物線解析式,根據(jù)方程△>0即可解題.
試題解析:(1)圖中可以看出拋物線與x軸交于(1,0)和(3,0),
∴方程ax2+bx+c=0的兩個根為x=1或x=3;
(2)不等式ax2+bx+c>0時,通過圖中可以看出:當(dāng)1<x<3時,y的值>0,
∴不等式ax2+bx+c>0的解集為(1,3);
(3)圖中可以看出對稱軸為x=2,
∴當(dāng)x>2時,y隨x的增大而減小;
(4)∵拋物線y=ax2+bx+c經(jīng)過(1,0),(2,2),(3,0),
∴,
解得:a=2,b=8,c=6,
∴2x2+8x6=k,移項(xiàng)得2x2+8x6k=0,
△=644(2)(6k)>0,
整理得:168k>0,
∴k<2時,方程ax2+bx+c=k有2個相等的實(shí)數(shù)根。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自學(xué)下面材料后,解答問題.
分母中含有未知數(shù)的不等式叫分式不等式.如:;等.那么如何求出它們的解集呢?根據(jù)我們學(xué)過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負(fù).其字母表達(dá)式為:
(1)若>0,>0,則>0;若<0,<0,則>0;
(2)若>0,<0,則<0;若<0,>0,則<0.
反之:(1)若>0,則或
(2)若<0,則__________或__________.
(3)根據(jù)上述規(guī)律,求不等式的解集.
(4)試求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連結(jié)CD,將線段CD繞點(diǎn)C順時針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若,求證:四邊形ADCE為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.
(1)求證:四邊形OCAD是平行四邊形;
(2)填空:①當(dāng)∠B= 時,四邊形OCAD是菱形;
②當(dāng)∠B= 時,AD與相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正方體的六個面分別涂上六種不同的顏色,并畫上朵數(shù)不等的花,各面上的顏色與花的朵數(shù)情況見下表:
現(xiàn)將上述大小相同,顏色、花朵分布也完全相同的四個正方體拼成一個水平放置的長方體,如圖所示.問:長方體的下底面共有多少朵花?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點(diǎn)E、F分別在CD、BC邊上,是等邊三角形.以下結(jié)論:①;②;③;④EF的垂直平分線是直線AC.正確結(jié)論個數(shù)有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面方格中有一個四邊形ABCD和點(diǎn)O,請?jiān)诜礁裰挟嫵鲆韵聢D形(只要求畫出平移、旋轉(zhuǎn)后的圖形,不要求寫出作圖步驟和過程).
(1)畫出四邊形ABCD以點(diǎn)O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°后得到的四邊形A1B1C1D1;
(2)畫出四邊形A1B1C1D1向右平移3格(3個小方格的邊長)后得到的四邊形A2B2C2D2;
(3)填空:若每個小方格的邊長為1,則四邊形A1B1C1D1與四邊形A2B2C2D2重疊部分的面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com