如圖所示,在矩形ABCD中,對角線AC和BD相交于點O,點E、F分別是OA和OC的中點,連接DF并延長與BC相交于點N,連接NE并延長與AD相交于點M,則AM:MD的值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:首先由△NCF∽△DAF得出NC、AD的比例關系,再由△AME∽△CNE得出AM、NC的比例關系,聯(lián)立上述兩式可得出AM、AD的比例關系,即可求出AM:MD的值.
解答:∵四邊形ABCD是矩形,
∴AD=BC,AD∥BC;
∴△AME∽△CNE①;△AFD∽△CFN②;
由①得:=,即NC=3AM;
由②得:=,即AD=3NC;
∴AD=9AM,DM=8AM;
即AM:MD=1:8.
故選B.
點評:此題主要考查了矩形的性質(zhì)及相似三角形的判定和性質(zhì);能夠以NC為中間值,得出AM、AD的比例關系是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=6,AD=2
3
,點P是邊BC上的動點(點P不與點B,C重合),過點P作直線PQ∥BD,交CD邊于Q點,再把△PQC沿著動直線PQ對折,點C的對應點是R點.設CP=x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CPQ的度數(shù).
(2)當x取何值時,點R落在矩形ABCD的邊AB上?
(3)當點R在矩形ABCD外部時,求y與x的函數(shù)關系式.并求此時函數(shù)值y的取值范圍.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在矩形ABCD中,AB=1,BC=2,E是CD邊的中點.點P從點A開始,沿逆時針方向在矩形邊上勻速運動,到點E停止.設點P經(jīng)過的路程為x,△APE的面積為S,則S關于x的函數(shù)關系的大致圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=12cm,BC=5cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動;點Q沿DA邊從點D開始向點A以1cm/s的速度移動.如果P、Q同時出發(fā),當Q到達終點時,精英家教網(wǎng)P也隨之停止運動.用t表示移動時間,設四邊形QAPC的面積為S.
(1)試用t表示AQ、BP的長;
(2)試求出S與t的函數(shù)關系式;
(3)當t為何值時,△QAP為等腰直角三角形?并求出此時S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,E為BC上一動點,BE=kCE,ED交AC于點P,DQ⊥AC于Q,A精英家教網(wǎng)B=nBC
(1)當n=1,k=2時(如圖1),
CP
PQ
=
 

(2)當n=
2
,k=1時(如圖2),求證:CP=AQ;
(3)若k=1,當n=
 
時,有CP⊥DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=4cm,BC=8cm、點P從點D出發(fā)向點A運動,同時點Q從點B出發(fā)向點C運動,點P、Q的速度都是1cm/s.
(1)在運動過程中,經(jīng)過
3
3
秒后,四邊形AQCP是菱形;
(2)菱形AQCP的周長為
20
20
cm、面積為
20
20
cm2

查看答案和解析>>

同步練習冊答案