如圖①,直線y=x-3與x軸、y軸分別交于B、C兩點(diǎn),點(diǎn)A在x軸負(fù)半軸上,且
OA
OC
=
1
3
,拋物線經(jīng)過(guò)A、B、C三點(diǎn),D為線段AB中點(diǎn),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n<0),連接DP交BC于點(diǎn)E.
(1)寫出A、B、C三點(diǎn)的坐標(biāo),并求拋物線的解析式;
(2)當(dāng)△BDE是等腰三角形時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo);
(3)連接PC、PB(如圖②),△PBC是否有最大面積?若有,求出△PBC的最大面積和此時(shí)P點(diǎn)的坐標(biāo);若沒有,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)
分析:(1)利用待定系數(shù)法求出二次函數(shù)解析式;
(2)運(yùn)用等腰三角形的性質(zhì),分三種情況討論,即可解決;
(3)求出△PBC的最大面積,可以聯(lián)系二次函數(shù)的最值問(wèn)題.
解答:解:(1)A(-1,0),B(3,0),C(0,-3)
設(shè)拋物線解析式為y=a(x+1)(x-3),把C(0,-3)代入得-3a=-3,解得a=1.
∴拋物線的解析式為y=x2-2x-3.

(2)E1(2,-1),E23-
2
, -
2
),E3(1,-2).

(3)作PF⊥x軸于點(diǎn)F,設(shè)△PBC的面積為S,則精英家教網(wǎng)
S=S四邊形OCPF+S△PFB-S△OBC
=
1
2
(3-n)m+
1
2
(3-m)(-n)-
1
2
×3×3,
=
3
2
m-
3
2
n-
9
2
,
又∵點(diǎn)P是拋物線上的點(diǎn),
且m>0,n<0
∴n=m2-2m-3(0<m<3)
S=-
3
2
m2+
9
2
m

=-
3
2
(m-
3
2
)2+
27
8

∴當(dāng)m=
3
2
時(shí),△PBC的面積最大,最大面積為
27
8
,
此時(shí)P點(diǎn)坐標(biāo)為(
3
2
, -
15
4
)
點(diǎn)評(píng):此題主要考查了用待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)最值問(wèn)題,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)中,直角梯形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),直線y=-
14
x+3經(jīng)過(guò)頂點(diǎn)B,與y軸交于頂點(diǎn)C,AB∥OC.
(1)求頂點(diǎn)B的坐標(biāo);
(2)如圖2,直線l經(jīng)過(guò)點(diǎn)C,與直線AB交于點(diǎn)M,點(diǎn)O?為點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn),連接CO?,并延長(zhǎng)交直線AB于第一象限的點(diǎn)D,當(dāng)CD=5時(shí),求直線l的解析式;
(3)在(2)的條件下,點(diǎn)P在直線l上運(yùn)動(dòng),點(diǎn)Q在直線OD上運(yùn)動(dòng),以P、Q、B、C為頂點(diǎn)的四邊形能否成為平行四邊形?若能,求出點(diǎn)P的坐標(biāo);若不能,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,該直線是某個(gè)一次函數(shù)的圖象,則此函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,在直線l上取A,B兩點(diǎn),使AB=10厘米,若在l上再取一點(diǎn)C,使AC=2厘米,M,N分別是AB,AC中點(diǎn).求MN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,兩直線y1=ax+3與y2=
14
x相交于P點(diǎn),當(dāng)y2<y1≤3時(shí),x的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南崗區(qū)一模)如圖1,直線y=-kx+6k(k>0)與x軸、y軸分別相交于點(diǎn)A、B,且△AOB的面積是24.
(1)求直線AB的解析式;
(2)如圖2,點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位的速度沿折線OA-AB運(yùn)動(dòng);同時(shí)點(diǎn)E從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿y軸正半軸運(yùn)動(dòng),過(guò)點(diǎn)E作與x軸平行的直線l,與線段AB相交于點(diǎn)F,當(dāng)點(diǎn)P與點(diǎn)F重合時(shí),點(diǎn)P、E均停止運(yùn)動(dòng).連接PE、PF,設(shè)△PEF的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,過(guò)P作x軸的垂線,與直線l相交于點(diǎn)M,連接AM,當(dāng)tan∠MAB=
12
時(shí),求t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案