【題目】如圖,拋物線y=ax2+x+c(a≠0)與x軸交于點A,B兩點,
其中A(-1,0),與y軸交于點C(0,2).
(1)求拋物線的表達式及點B坐標;
(2)點E是線段BC上的任意一點(點E與B、C不重合),過點E作平行于y軸的直線交拋物線于點F,交x軸于點G.
①設點E的橫坐標為m,用含有m的代數式表示線段EF的長;
②線段EF長的最大值是 .
【答案】(1)y=-x2+x+2,B(4,0);(2)①-m2+2m;② 2
【解析】(1)把A(-1,0)、 C(0,2)代入y=ax2+x+c代入,求a,c的值,得到函數解析式.再令y=0,可求x,從而求B坐標;
(2)用待定系數法先求直線BC的函數表達式,再根據EF=FG-GE=-m2+m+2-(-m+2),可得代數式;求二次函數頂點縱坐標可得.
(1)將A(-1,0)、 C(0,2)代入y=ax2+x+c(a≠0)
得:a=-, c=2
y=-x2+x+2
當y=0時,x1=-1,x2=4,故B(4,0)
(2)①設直線BC的函數表達式為y=kx+b,將B(4,0)、 C(0,2)代入
得:y=-x+2,
EF=FG-GE=-m2+m+2-(-m+2)
=-m2+2m
② 2
科目:初中數學 來源: 題型:
【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質完全相同的小球,其中甲袋中的小球上分別標有數字0,1,2,乙袋中的小球上分別標有數字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,把球上的數字記為x,再從乙袋中任意摸出一個小球,把球上的數字記為y,以此確定點M的坐標(x,y).
(1)請你用畫樹狀圖或列表的方法(只選其中一種),寫出點M所有可能的坐標;
(2)求點M(x,y)在函數y=﹣2x的圖象上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為 20 元/千克,售價不低于 20 元/千克,且不超過 32 元/千克,根據銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克)與該天的售價 x(元/千克)滿足如下表所示的一次函數關系.
銷售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價 x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為 23.5 元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七年級1班體育委員統(tǒng)計了全班同學60秒跳繩的次數,并繪制出如下頻數分布表和頻數分布直方圖:
次數 | 80≤x<100 | 100≤x<120 | 120≤x<140 | 140≤x<160 | 160≤x<180 | 180≤x<200 |
頻數 | a | 4 | 12 | 16 | 8 | 3 |
結合圖表完成下列問題:
(1)a= ;
(2)補全頻數分布直方圖;
(3)寫出全班人數是 ,并求出第三組“120≤x<140”的頻率(精確到0.01)
(4)若跳繩次數不少于140的學生成績?yōu)閮?yōu)秀,則優(yōu)秀學生人數占全班總人數的百分之幾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于實數a,b,我們可以用min{a,b}表示a,b兩數中較小的數,例如min{3,-1}=-1,min{2,2}=2. 類似地,若函數y1、y2都是x的函數,則y=min{y1, y2}表示函數y1和y2的“取小函數”.
(1)設y1=x,y2=,則函數y=min{x, }的圖像應該是 中的實線部分.
(2)請在下圖中用粗實線描出函數y=min{(x-2)2, (x+2)2}的圖像,并寫出該圖像的三條不同性質:
① ;
② ;
③ ;
(3)函數y=min{(x-4)2, (x+2)2}的圖像關于 對稱.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某中學利用“陽光大課間”,組織學生積極參加豐富多彩的課外活動,學校成立了舞蹈隊、足球隊、籃球隊、毽子隊、射擊隊等,其中射擊隊在某次訓練中,甲、乙兩名隊員各射擊10發(fā)子彈,成績用如圖的折線統(tǒng)計圖表示:(甲為實線,乙為虛線)
(1)依據折線統(tǒng)計圖,得到下面的表格:
射擊次序(次) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲的成績(環(huán)) | 8 | 9 | 7 | 9 | 8 | 6 | 7 | a | 10 | 8 |
乙的成績(環(huán)) | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | b | 10 |
其中a= ,b= ;
(2)甲成績的眾數是 ,乙成績的中位數是 環(huán);
(3)請運用方差的知識,判斷甲、乙兩人誰的成績更為穩(wěn)定?
(4)該校射擊隊要參加市組織的射擊比賽,已預選出2名男同學和2名女同學,現(xiàn)要從這4名同學中任意選取2名同學參加比賽,請用列表或畫樹狀圖法,求出恰好選到1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,且AB=BC=CD,AB∥CD,連接BD.
(1)求證:BD是⊙O的切線;
(2)若AB=10,cos∠BAC=,求BD的長及⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,,,.分別以點,為圓心,大于長為半徑畫弧,兩弧交于點,作射線交于點,交于點.若點是的中點,的周長為8,則的長為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知二次函數y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側),頂點D和點B關于過點A的直線l:y=﹣x﹣對稱.
(1)求A、B兩點的坐標及二次函數解析式;
(2)如圖2,作直線AD,過點B作AD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:
(3)將二次函數圖象向右平移個單位,再向上平移3個單位,平移后的二次函數圖象上存在一點M,其橫坐標為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com