精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在O的內接四邊形ABCD中,BCD=120°,CA平分∠BCD.

(1)求證:ABD是等邊三角形;

(2)若BD=3,求O的半徑.

【答案】(1)詳見解析;(2).

【解析】

(1)因為AC平分∠BCD,∠BCD=120°,根據角平分線的定義得:∠ACD=∠ACB=60°,根據同弧所對的圓周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根據三個角是60°的三角形是等邊三角形得△ABD是等邊三角形.(2)作直徑DE,連結BE,由于△ABD是等邊三角形,則∠BAD=60°,由同弧所對的圓周角相等,得∠BED=∠BAD=60°.根據直徑所對的圓周角是直角得,∠EBD=90°,則∠EDB=30°,進而得到DE=2BE.EB=x,則ED=2x,根據勾股定理列方程求解即可.

解:(1)∵∠BCD=120°,CA平分∠BCD,

∴∠ACD=ACB=60°,

由圓周角定理得,∠ADB=ACB=60°,ABD=ACD=60°,

∴△ABD是等邊三角形;

(2)連接OB、OD,作OHBDH,

DH=BD=,

BOD=2BAD=120°,

∴∠DOH=60°,

RtODH中,OD==

∴⊙O的半徑為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AC是O的直徑,PA切O于點A,點B是O上的一點,且∠BAC=30°,∠APB=60°.

(1)求證:PB是O的切線;

(2)O的半徑為2,求弦AB及PA,PB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校運動會需購買A,B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.

1)求AB兩種獎品的單價各是多少元?

2)學校計劃購買A、B兩種獎品共100件,購買費用不超過1150元,且A種獎品的數量不大于B種獎品數量的3倍,設購買A種獎品m件,購買費用為W元,寫出W(元)與m(件)之間的函數關系式.求出自變量m的取值范圍,并確定最少費用W的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線 yx2+2x 的頂點為 A,直線 yx+2 與拋物線交于 B,C 兩點.

(1)求 A,BC 三點的坐標;

(2)作 CDx 軸于點 D,求證:△ODC∽△ABC;

(3)若點 P 為拋物線上的一個動點,過點 P PMx 軸于點 M,則是否還存在除 C 點外的其他位置的點,使以 O,P,M 為頂點的三角形與△ABC 相似? 若存在,請求出這樣的 P 點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點E,F在菱形ABCD的對邊上,AEBC.∠1=∠2

1)判斷四邊形AECF的形狀,并證明你的結論.

2)若AE4AF2,試求菱形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年,重慶市南岸區(qū)廣陽鎮(zhèn)一果農李燦收獲枇杷20噸,桃子12噸,現計劃租用甲、乙兩種貨車共8輛將這批水果全部運往外地銷售,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.李燦安排甲、乙兩種貨車一次性地將水果運到銷售地的方案數有( )

A.1種B.2種C.3種D.4種

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,BABC,以AB為直徑作O,交AC于點D,連接DB,過點DDEBC,垂足為E

(1)求證:ADCD

(2)求證:DEO的切線.

(3)若∠C=60°,DE,求O半徑的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC是一塊銳角三角形材料,高線AH8 cm,底邊BC10 cm,要把它加工成一個矩形零件,使矩形DEFG的一邊EFBC上,其余兩個頂點D,G分別在AB,AC上,則四邊形DEFG的最大面積為( )

A. 40 cm2 B. 20 cm2

C. 25 cm2 D. 10 cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結論:

b2=4ac;abc>0;a>c;4a﹣2b+c>0,其中正確的個數有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習冊答案