【題目】某校運動會需購買A,B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.

1)求AB兩種獎品的單價各是多少元?

2)學校計劃購買A、B兩種獎品共100件,購買費用不超過1150元,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買費用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.求出自變量m的取值范圍,并確定最少費用W的值.

【答案】1A獎品的單價是10元,B獎品的單價是15元;(2)當購買A種獎品75件,B種獎品25件時,費用W最小,最小為1125.

【解析】試題(1)設(shè)A獎品的單價是x元,B獎品的單價是y元,根據(jù)條件建立方程組求出其解即可;

2)根據(jù)總費用=兩種獎品的費用之和表示出Wm的關(guān)系式,并有條件建立不等式組求出x的取值范圍,由一次函數(shù)的性質(zhì)就可以求出結(jié)論.

試題解析:(1)設(shè)A獎品的單價是x元,B獎品的單價是y元,由題意,得

解得:

答:A獎品的單價是10元,B獎品的單價是15元;

2)由題意,得

W=10m+15100-m=-5m+1500

解得:70≤m≤75

∵m是整數(shù),

∴m=7071,7273,7475

∵W=-5m+1500,

∴k=-50,

∴Wm的增大而減小,

∴m=75時,W最小=1125

應(yīng)買A種獎品75件,B種獎品25件,才能使總費用最少為1125元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】受地震的影響,某超市雞蛋供應(yīng)緊張,需每天從外地調(diào)運雞蛋1200斤.超市決定從甲、乙兩大型養(yǎng)殖場調(diào)運雞蛋,已知甲養(yǎng)殖場每天最多可調(diào)出800斤,乙養(yǎng)殖場每天最多可調(diào)出900斤,從兩養(yǎng)殖場調(diào)運雞蛋到超市的路程和運費如表:

到超市的路程(千米)

運費(元/斤千米)

甲養(yǎng)殖場

200

0.012

乙養(yǎng)殖場

140

0.015


(1)若某天調(diào)運雞蛋的總運費為2670元,則從甲、乙兩養(yǎng)殖場各調(diào)運了多少斤雞蛋?
(2)設(shè)從甲養(yǎng)殖場調(diào)運雞蛋x斤,總運費為W元,試寫出W與x的函數(shù)關(guān)系式,怎樣安排調(diào)運方案才能使每天的總運費最省?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AQ=PQ,PR=PSPRABR,PSACS,則三個結(jié)論:①AS=AR,QPAR③△BPR≌△QPS一定正確的是( )

A. 全部正確 B. 僅①和②正確 C. 僅①正確 D. 僅①和③正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,OE=OF.求證:△AOE≌△BOF,AE⊥BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校田園科技社團計劃購進A,B兩種花卉兩次購買每種花卉的數(shù)量以及每次的總費用如下表所示:

花卉數(shù)量(單位:株)

總費用

(單位:元)

A

B

第一次購買

10

25

225

第二次購買

20

15

275

(1)你從表格中獲取了什么信息?______________________________(請用自己的語言描述,寫出一條即可);

(2)A,B兩種花卉每株的價格各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】,則=____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若樣本x1+1,x2+1,,xn+1的平均數(shù)為10,方差為2,則對于樣本x1+2,x2+2,xn+2,下列結(jié)論正確的是(

A. 平均數(shù)為10,方差為2 B. 平均數(shù)為11,方差為3

C. 平均數(shù)為11,方差為2 D. 平均數(shù)為12,方差為4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.

(1)求購買一個籃球、一個足球各需多少元;

(2)若體育老師帶了8000元去購買這種籃球與足球共100個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結(jié)論:①abc=0;②a+b+c>0;③a>b;④b2﹣4ac<0;其中正確的結(jié)論有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案