【題目】如圖,點C在以AB為直徑的半圓O上,延長BC到點D,使得CD=BC,過點D作DE⊥AB于點E,交AC于點F,點G為DF的中點,連接CG、OF、FB.
(1)求證:CG是⊙O的切線;
(2)若△AFB的面積是△DCG的面積的2倍,求證:OF∥BC.
【答案】見解析
【解析】
試題分析:(1)連接OC.欲證CG是⊙O的切線,只需證明∠CGO=90°,即CG⊥OC;
(2)根據(jù)直角三角形ABC、直角三角形DCF的面積公式,以及直角三角形斜邊的中線等于斜邊的一半求得AC=2AF;然后根據(jù)三角形中位線的判定與定理證得該結(jié)論.
證明:(1)如圖,連接OC.
在△ABC中,∵AB是⊙O的直徑,
∴∠ACB=90°(直徑所對的圓周角是直角);
又∵OA=OC,
∴∠A=∠ACO(等邊對等角);
在Rt△DCF中,∵點G為DF的中點,∴CG=GF(直角三角形斜邊上的中線是斜邊的一半),
∴∠GCF=∠CFG(等邊對等角);
∵DE⊥AB(已知),∠CFG=∠AFE(對頂角相等);
∴在Rt△AEF中,∠A+∠AFE=90°;
∴∠ACO+∠GCF=90°,即∠GCO=90°,
∴CG⊥OC,
∴CG是⊙O的切線;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°(直徑所對的圓周角是直角),即AC⊥BD;
又∵CD=BC,點G為DF的中點,
∴S△AFB=S△ABC﹣S△BCF=(ACBC﹣CFBC),S△DCG=S△FCD=×DCCF=BCCF;
∵△AFB的面積是△DCG的面積的2倍,
∴(ACBC﹣CFBC)=2×BCCF,
∴AC=2CF,即點F是AC的中點;
∵O點是AB的中點,
∴OF是△ABC的中位線,
∴OF∥BC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2,則陰影部分圖形的面積為( )
A.4π B.2π C.π D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計算圖中實線所圍成的圖形的面積S是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2+bx+5配方后為y=(x﹣2)2+k,則b、k的值分別為( )
A. 0,5 B. 0,1 C. ﹣4,5 D. ﹣4,1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是方程x2﹣2x﹣1=0的兩根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,則a的值等于( )
A.﹣5 B.5 C.﹣9 D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c圖象向右平移2個單位再向下平移3個單位,所得圖象的解析式為y=x2﹣2x﹣3,則b、c的值為( )
A.b=2,c=2 B.b=2,c=0
C.b=﹣2,c=﹣1 D.b=﹣3,c=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接元旦小長假的購物高峰,黃興南路步行街某運動品牌專賣店購進甲、乙兩種服裝,現(xiàn)此商店同時賣出甲、乙兩種服裝各一件,每件售價都為240元,其中一件賺了20%,另一件虧了20%,那么這個商店賣出這兩件服裝總體的盈虧情況是( )
A. 賺了12元 B. 虧了12元 C. 賺了20元 D. 虧了20元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com