【題目】如圖,貴陽市某中學(xué)數(shù)學(xué)活動(dòng)小組在學(xué)習(xí)了“利用三角函數(shù)測(cè)高”后.選定測(cè)量小河對(duì)岸一幢建筑物BC的高度.他們先在斜坡上的D處,測(cè)得建筑物頂?shù)难鼋菫?0°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測(cè)得建筑物頂B的仰角是50°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))

【答案】解:過點(diǎn)D作DH⊥BC于點(diǎn)M,如圖所示:

則四邊形DHCE是矩形,DH=EC,DE=HC,

設(shè)建筑物BC的高度為xm,則BH=(x﹣5)m,

在Rt△DHB中,∠BDH=30°,

∴DH= (x﹣5),AC=EC﹣EA= (x﹣5)﹣10,

在Rt△ACB中,∠BAC=50°,tan∠BAC= ,

∴x=tan50°[ (x﹣5)],

解得:x≈21,

答:建筑物BC的高約為21m.


【解析】首先過點(diǎn)D作DH⊥BC,垂直為H,依據(jù)有三個(gè)角為直角的四邊形為矩形可得到四邊形DHCE是矩形,然后依據(jù)矩形的性質(zhì)得到DH=EC,DE=HC,設(shè)建筑物BC的高度為xm,則BH=(x-5)m,由三角函數(shù)得出DH=(x-5),AC=EC-EA求得AC的長,然后依據(jù)銳角三角形函數(shù)的定義列出關(guān)于x的方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,某商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購物.

1)顧客購買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購物合算?

2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

3)小張按合算的方案,把這臺(tái)冰箱買下,如果紅旗商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知

1)讀句畫圖:畫的角平分線、于點(diǎn)、,且、交于點(diǎn),過點(diǎn)作的延長線于

2)在(1)的條件下解決下面問題:

①填表

的度數(shù)

的度數(shù)

__________

______________

______________

②根據(jù)圖中的數(shù)據(jù),你發(fā)現(xiàn)無論是什么角,總是__________(填銳角、鈍角或直角).

③若過點(diǎn)作,你能猜想之間的數(shù)量關(guān)系嗎?說明理由.(在(1)中的圖上作

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖1至圖3中,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是線段CE的中點(diǎn).四邊形BCGF和四邊形CDHN都是正方形.AE的中點(diǎn)是M.

(1)如圖1,點(diǎn)EAC的延長線上,點(diǎn)N與點(diǎn)G重合時(shí),點(diǎn)M與點(diǎn)C重合,求證:FM=MH,F(xiàn)MMH;

(2)將圖1中的CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖2,求證:△FMH是等腰直角三角形;

(3)將圖2中的CE縮短到圖3的情況,△FMH還是等腰直角三角形嗎?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.

(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求點(diǎn)P的速度及AC的長;
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn)0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長在圖1中所表示的實(shí)際意義;
②當(dāng)0<x<6時(shí),求線段EF長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知同一平面內(nèi),

1)問題發(fā)現(xiàn):的余角是_____,的度數(shù)是_____

2)拓展探究:若平分,平分,則的度數(shù)是_____

3)類比延伸:在(2)的條件下,如果將題目中的改為;改為,其他條件不變,你能求出嗎?若能,請(qǐng)你寫出求解過程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A48°,∠ABC與∠ACD的平分線交于點(diǎn)A1,得∠A1;∠A1BC與∠A1CD的平分線相交于點(diǎn)A2,得∠A2;……;∠An1BC與∠An1CD的平分線交于點(diǎn)An,要使∠An的度數(shù)為整數(shù),則n的最大值為(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,兩動(dòng)點(diǎn)D,E分別從點(diǎn)A,點(diǎn)B同時(shí)出發(fā)向點(diǎn)O運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)O停止),運(yùn)動(dòng)速度分別是1個(gè)單位長度/秒和 個(gè)單位長度/秒,設(shè)運(yùn)動(dòng)時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)E,過點(diǎn)E作x軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F.

(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長;
(3)當(dāng)四邊形ADEF為菱形時(shí),試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時(shí)拋物線的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案