【題目】如圖:已知.
(1)讀句畫圖:畫的角平分線、交、于點(diǎn)、,且、交于點(diǎn),過點(diǎn)作交的延長線于.
(2)在(1)的條件下解決下面問題:
①填表
的度數(shù) | |||
的度數(shù) | __________ | ______________ | ______________ |
②根據(jù)圖中的數(shù)據(jù),你發(fā)現(xiàn)無論是什么角,總是__________(填銳角、鈍角或直角).
③若過點(diǎn)作于,你能猜想與之間的數(shù)量關(guān)系嗎?說明理由.(在(1)中的圖上作于)
【答案】(1)見解析;(2)①;②銳角;③,理由見解析
【解析】
(1)根據(jù)要求畫出圖形即可;
(2)①當(dāng)∠ACB=40°時(shí),根據(jù)角平分線定義及三角形外角的性質(zhì)求出∠AIF,然后可得∠BFC,同理求出其他兩種情況;
②根據(jù)∠BFC=∠AIF=90°-∠ACB,得出∠BFC<90°,即可判斷;
③利用直角三角形兩銳角互余可得,結(jié)合可得答案.
解:(1)如圖所示;
(2)①∵AD,BE是△ABC的角平分線,
∴∠BAI=∠BAC,∠ABI=∠ABC,
∴∠AIF=∠ABI+∠ABI=(∠BAC+∠ABC)=(180°-∠ACB)=90°-∠ACB,
∴當(dāng)∠ACB=40°時(shí),∠AIF=70°,
∵CF∥AD,
∴∠BFC=∠AIF=70°,
同法可得:當(dāng)∠ACB=90°時(shí),∠BFC=45°,
當(dāng)∠ACB=110°時(shí),∠BFC=35°,
故答案為70°,45°,35°;
②∵∠BFC=∠AIF=90°-∠ACB,
∴∠BFC<90°,
∴∠BFC總是銳角;
③如圖,過點(diǎn)作于;
結(jié)論:,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)有( )
①已知直角三角形的面積為2,兩直角邊的比為1:2,則斜邊長為;
②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;
③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;
④等腰三角形面積為12,底邊上的高為4,則腰長為5.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到△A′BC′,使A、B、C′在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等腰三角形,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合).以AD為邊作△ADE,且AD=AE,連接CE,∠BAC=∠DAE.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),試說明:①△ABD≌△ACE;②BC=DC+CE;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長線上時(shí),其他條件不變,探究線段BC、DC、CE之間存在的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】樂樂發(fā)現(xiàn)等腰三角形一腰上的高與另一腰的夾角為40°,則這個(gè)等腰三角形底角的度數(shù)為( )
A.50°B.65°C.65°或25°D.50°或40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,貴陽市某中學(xué)數(shù)學(xué)活動(dòng)小組在學(xué)習(xí)了“利用三角函數(shù)測(cè)高”后.選定測(cè)量小河對(duì)岸一幢建筑物BC的高度.他們先在斜坡上的D處,測(cè)得建筑物頂?shù)难鼋菫?0°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測(cè)得建筑物頂B的仰角是50°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖甲,AB∥CD,試問∠2與∠1+∠3的關(guān)系是什么,為什么?
(2)如圖乙,AB∥CD,試問∠2+∠4與∠1+∠3+∠5一樣大嗎?為什么?
(3)如圖丙,AB∥CD,試問∠2+∠4+∠6與∠1+∠3+∠5+∠7哪個(gè)大?為什么?
你能將它們推廣到一般情況嗎?請(qǐng)寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再從剩下的卡片中隨機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com