【題目】如圖,點C是⊙O優(yōu)弧ACB上的中點,弦AB=6cm,E為OC上任意一點,動點F從點A出發(fā),以每秒1cm的速度沿AB方向響點B勻速運動,若y=AE-EF,則y與動點F的運動時間x(0≤x≤6 )秒的函數關系式為 .
【答案】y=x2-6x
【解析】
首先延長CO交AB于G,根據垂徑定理的知識,可得CO⊥AB,并可求得AG的值,由勾股定理可得AE2=AG2+EG2,EF2=FG2+EG2,即可求得y=AG2-FG2,即可求得函數關系式.
解:延長CO交AB于G,
∵點C是⊙O優(yōu)弧ACB上的中點,
∴CO⊥AB,AG=AB=×6=3(cm),
∴AE2=AG2+EG2,EF2=FG2+EG2,
當0≤x≤3時,AF=xcm,FG=(3-x)cm,
∴y=AE2-EF2=AG2+EG2-FG2-EG2=AG2-FG2=9-(3-x)2=6x-x2;
當3<x≤6時,AF=xcm,FG=(x-3)cm,
∴y=AE2-EF2=AG2+EG2-FG2-EG2=AG2-FG2=9-(x-3)2=6x-x2.
故答案為:y=6x-x2.
科目:初中數學 來源: 題型:
【題目】王勇和李明兩位同學在學習“概率”時,做投擲骰子(質地均勻的正方體)實驗,他們共做了30次實驗,實驗的結果如下:
朝上的點數 | 1 | 2 | 3 | 4 | 5 | 6 |
出現的次數 | 2 | 5 | 6 | 4 | 10 | 3 |
(1)分別計算這30次實驗中“3點朝上”的頻率和“5點朝上”的頻率;
(2)王勇說:“根據以上實驗可以得出結論:由于5點朝上的頻率最大,所以一次實驗中出現5點朝上的概率最大”;李明說:“如果投擲300次,那么出現6點朝上的次數正好是30次”.試分別說明王勇和李明的說法正確嗎?并簡述理由;
(3)現王勇和李明各投擲一枚骰子,請用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數之和為3的倍數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+c與直線y=3相交于點A,B,與y軸相交于點C(0,﹣1),其中點A的橫坐標為﹣4.
(1)計算a,c的值;
(2)求出拋物線y=ax2+c與x軸的交點坐標;
(3)利用圖象,當0≤ax2+c≤3時,直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC⊥x軸于點C,交拋物線于點D.
(1)若拋物線的解析式為y=﹣2x2+2x+4,設其頂點為M,其對稱軸交AB于點N.
①求點M、N的坐標;
②是否存在點P,使四邊形MNPD為菱形?并說明理由;
(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與△AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在東西方向的海岸線MN上有A、B兩艘船,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東58°方向,船P在船B的北偏西35°方向,AP的距離為30海里(參考數據:sin32°≈0.53,sin55°≈0.82).
(1)求船P到海岸線MN的距離(精確到0.1海里);
(2)若船A、船B分別以20海里/小時、15海里/小時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,I是△ABC的內心,∠BAC的平分線與△ABC的外接圓相交于點D,交BC于點E.
(1)求證:BD=ID;
(2)求證:ID2=DEDA.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com