【題目】已知函數(shù)的圖象經(jīng)過點(diǎn)A(3,2)及B(1,6).
(1)求此一次函數(shù)的解析式;
(2)求此一次函數(shù)與坐標(biāo)軸圍成的三角形的面積.
【答案】(1)y=-2x+8;(2)16.
【解析】
(1)利用待定系數(shù)法,將A,B坐標(biāo)代入函數(shù)解析式,可得出方程組,解方程組求出k,b,即可得函數(shù)解析式;
(2)根據(jù)解析式求出此函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo),然后即可計(jì)算函數(shù)圖象與坐標(biāo)軸圍成的三角形的面積.
解:(1)將點(diǎn)A(3,2),B(1,6)代入,
得,解得:,
故一次函數(shù)解析式為:y=-2x+8;
(2)在y=-2x+8中,令x=0,得y=8,令y=0,則x=4,
則此函數(shù)圖象與x軸的交點(diǎn)的坐標(biāo)是(4,0),與y軸的交點(diǎn)的坐標(biāo)是(0,8),
故此函數(shù)圖象與坐標(biāo)軸圍成的三角形的面積=×4×8=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(1,3),將點(diǎn)A繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是( )
A. (-3,1) B. (3,-1) C. (-1,3) D. (1,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+8的圖像與x軸、y軸分別交于A、B兩點(diǎn).P是x軸上一個(gè)動(dòng)點(diǎn),若沿BP將△OBP翻折,點(diǎn)O恰好落在直線AB上的點(diǎn)C處,則點(diǎn)P的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達(dá)式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,南沙區(qū)政府決定對(duì)區(qū)直屬機(jī)關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機(jī)抽查了其中50戶家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn)每戶用水量均在10﹣14噸/月范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計(jì)圖.
(1)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)這50戶家庭月用水量的平均數(shù)是 ,眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),估計(jì)南沙區(qū)直屬機(jī)關(guān)300戶家庭中月平均用水量不超過12噸的約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義為函數(shù)的特征數(shù),下面給出特征數(shù)為的函數(shù)的一些結(jié)論:
①當(dāng)時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是;
②當(dāng)時(shí),函數(shù)圖象截軸所得的線段長度大于;
③當(dāng)時(shí),函數(shù)在時(shí),隨的增大而減。
④當(dāng)時(shí),函數(shù)圖象經(jīng)過同一個(gè)點(diǎn).
其中正確的結(jié)論有( )
A. ①②③④ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線過軸上的點(diǎn),且與拋物線相交于、兩點(diǎn),點(diǎn)坐標(biāo)為.
求直線和拋物線所表示的函數(shù)表達(dá)式;
在拋物線上是否存在一點(diǎn),使得?若不存在,說明理由;若存在,請求出點(diǎn)的坐標(biāo),與同伴交流.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境
在學(xué)習(xí)了《勾股定理》和《實(shí)數(shù)》后,某班同學(xué)以“已知三角形三邊的長度,求三角形面積”為主題開展了數(shù)學(xué)活動(dòng).
操作發(fā)現(xiàn)
“畢達(dá)哥拉斯”小組的同學(xué)想到借助正方形網(wǎng)格解決問題.如圖1是6×6的正方形網(wǎng)格,每個(gè)小正方形的邊長均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).在圖1中畫出△ABC,其頂點(diǎn)A,B,C都是格點(diǎn),同時(shí)構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊DE,EF分別經(jīng)過點(diǎn)C、A,他們借助此圖求出了△ABC的面積.
(1)在圖1中,所畫的△ABC的三邊長分別是AB= ,BC= ,AC= ; △ABC的面積為 .
實(shí)踐探究
(2)在圖2所示的正方形網(wǎng)格中畫出△DEF(頂點(diǎn)都在格點(diǎn)上),使DE=,DF=, EF=,并寫出△DEF的面積.
繼續(xù)探究
“秦九韶”小組的同學(xué)想到借助曾經(jīng)閱讀的數(shù)學(xué)資料: 已知三角形的三邊長分別為a、b、c,求其面積,對(duì)此問題中外數(shù)學(xué)家曾經(jīng)進(jìn)行過深入研究.古希臘的幾何學(xué)家海倫(Heron,約公元50年),在他的著作《度量》一書中,給出了求其面積的海倫公式:
我國南宋時(shí)期數(shù)學(xué)家秦九韶(約1202 ~1261),給出了著名的秦九韶公式:
(3)一個(gè)三角形的三邊長依次為,,,請你從上述材料中選用適當(dāng)?shù)墓?/span> 求這個(gè)三角形的面積.(寫出計(jì)算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D在線段AB的反向延長線上,過AC的中點(diǎn)F作線段GE交∠DAC的平分線于E,交BC于G,且AE∥BC.
(1)求證:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com