【題目】如圖1,以直線(xiàn)MN上的線(xiàn)段BC為邊作正方形ABCD,CH平分∠DCN,點(diǎn)E為射線(xiàn)BN上一點(diǎn),連接AE,過(guò)點(diǎn)EAE的垂線(xiàn)交射線(xiàn)CH于點(diǎn)F,探索AEEF的數(shù)量關(guān)系。

(1)閱讀下面的解答過(guò)程。并按此思路完成余下的證明過(guò)程

當(dāng)點(diǎn)E在線(xiàn)段BC上,且點(diǎn)EBC中點(diǎn)時(shí),AB=EF

理由如下:

AB中點(diǎn)P,達(dá)接PE

在正方形ABCD中,∠B=BCD=90°,AB=BC

∴△BPE等腰三角形,AP=BC

∴∠BPB=45°

∴∠APBE=135°

又因?yàn)?/span>CH平分∠DCN

∴∠DCF=45°

∴∠ECF=135°

∴∠APE=ECF

余下正明過(guò)程是:

(2)當(dāng)點(diǎn)E為線(xiàn)段AB上任意一點(diǎn)時(shí),如圖2,結(jié)論“AE=EF”是否成立,如果成立,請(qǐng)給出證明過(guò)程;

(3)當(dāng)點(diǎn)EBC的延長(zhǎng)線(xiàn)時(shí),如圖3,結(jié)論“AE=EF”是否仍然成立,如果成立,請(qǐng)?jiān)趫D3中畫(huà)出必要的輔助線(xiàn)(不必說(shuō)明理由)。

【答案】(1)見(jiàn)解析;(2)成立,理由見(jiàn)解析;(3)成立,圖形見(jiàn)解析

【解析】

(1) 取AB中點(diǎn)P,連接PE,得出∠APE=∠ECF,再根據(jù)同角的余角相等得出∠BAE=∠CEF,進(jìn)而得出ΔAPE≌ΔECF,求出結(jié)果;

(2) 在AB上截取BN=BE,類(lèi)比(1)的證明方法即可得出結(jié)果;

(3) 在BA延長(zhǎng)線(xiàn)上取一點(diǎn)Q,使BQ=BE,連接EQ, 類(lèi)比(1)的證明方法即可得出結(jié)果.

(1)余下證明過(guò)程為:

∵∠ABE=90°

∴∠BAE+∠AEB=90°

∵∠AEF=90°

∴∠BAE=∠CEF

∴ΔAPE≌ΔECF

∴AE=EF.

(2)成立

證明:在AB上截取BN=BE

在正方形ABCD中,∠B=∠BCD=90°,AB=BC

∴ΔBNE為等腰三角形,AN=EC

∴∠BNE=45°

∴∠ANE=135°

又因?yàn)镚H平分∠DCN

∴∠DCF=45°

∴∠ECF=135°

∴∠ANE=∠ECF

由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°

∴∠BAE=∠CEF

∴ΔANE≌ΔECF

∴AE=EF

(3)如圖

證明:在BA延長(zhǎng)線(xiàn)上取一點(diǎn)Q,使BQ=BE,連接EQ,


在正方形ABCD中,
∵AB=BC,
∴AQ=CE.
∵∠B=90°,
∴∠Q=45°.
∵CH平分∠DCN,∠DCN=∠DCB=90°,
∴∠HCE=∠Q=45°.
∵AD∥BE,
∴∠DAE=∠AEB.
∵∠AEF=∠QAD=90°,
∴∠QAE=∠CEF.
∴△QAE≌△CEF.
∴AE=EF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線(xiàn)于點(diǎn)F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,AB//CD,AC//BD,下列判斷中正確的是 ( )

A. 如果BC=AD,那么四邊形ABCD是等腰梯形;

B. 如果AD//BC,那么四邊形ABCD是菱形;

C. 如果AC平分BD,那么四邊形ABCD是矩形;

D. 如果AC⊥BD,那么四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)生騎電動(dòng)車(chē)上學(xué)給交通安全帶來(lái)隱患,為了解某中學(xué)2 500個(gè)學(xué)生家長(zhǎng)對(duì)“中學(xué)生騎電動(dòng)車(chē)上學(xué)”的態(tài)度,中隨機(jī)調(diào)查400個(gè)家長(zhǎng),結(jié)果有360個(gè)家長(zhǎng)持反對(duì)態(tài)度,則下列說(shuō)法正確的是( )

A. 調(diào)查方式是全面調(diào)查 B. 樣本容量是360

C. 該校只有360個(gè)家長(zhǎng)持反對(duì)態(tài)度 D. 該校約有90%的家長(zhǎng)持反對(duì)態(tài)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校圍繞著你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫(xiě)一項(xiàng))的問(wèn)題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:

(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司改革實(shí)行每月考核再獎(jiǎng)勵(lì)的新制度,大大調(diào)動(dòng)了員工的積極性,年一名員工每月獎(jiǎng)金的變化如下表:(正數(shù)表示比前一月多的錢(qián)數(shù),負(fù)數(shù)表示比前一月少的錢(qián)數(shù))單位:(元)

月份

一月

二月

三月

四月

五月

六月

七月

錢(qián)數(shù)變化

1)若年底月份獎(jiǎng)金為元,用代數(shù)式表示年二月的獎(jiǎng)金;

2)請(qǐng)判斷七個(gè)月以來(lái)這名員工得到獎(jiǎng)金最多是哪個(gè)月?最少是哪個(gè)月?他們相差多少元?

3)若年這七個(gè)月中這名員工最多得到的獎(jiǎng)金是元,請(qǐng)問(wèn)月份他得到多少獎(jiǎng)金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座拱橋的輪廓是拋物線(xiàn)型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.

(1)將拋物線(xiàn)放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.

(2)求支柱MN的長(zhǎng)度.

(3)拱橋下地平面是雙向行車(chē)道(正中間是一條寬2m的隔離帶),其中的一條行車(chē)道能否并排行駛寬2m、高3m的三輛汽車(chē)(汽車(chē)間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)A在反比例函數(shù)x>0)的圖象上,點(diǎn)B在反比例函數(shù)。x>0)的圖象上,且∠AOB=90°,則tanOAB的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上,點(diǎn)和點(diǎn)分別位于原點(diǎn)兩側(cè),點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,且.

1)若,則的值為.

2)若,求的值;

3)點(diǎn)為數(shù)軸上一點(diǎn),對(duì)應(yīng)的數(shù)為,若點(diǎn)在原點(diǎn)的左側(cè),的中點(diǎn),,請(qǐng)畫(huà)出圖形并求出滿(mǎn)足條件的的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案