【題目】觀察下表:
我們把表格中字母的和所得的多項(xiàng)式稱為"'特征多項(xiàng)式",例如:第1格的“特征多項(xiàng)式”為 4x+y,第 2 格的“特征多項(xiàng)式”為 8x+4y, 回答下列問題:
(1)第 3 格的“特征多項(xiàng)式”為 第 4 格的“待征多項(xiàng)式”為 , 第 n 格的“特征多項(xiàng)式”為 .
(2)若第 m 格的“特征多項(xiàng)式”與多項(xiàng)式-24x+2y-5 的和不含有 x 項(xiàng),求此“特征多項(xiàng)式”.
【答案】(1)12x+9y,16x+16y,4nx+n2y;(2)24x+36y.
【解析】
(1)根據(jù)表格中的數(shù)據(jù)找出規(guī)律即可解答本題;
(2)根據(jù)(1)中的結(jié)果可以寫出第m格的“特征多項(xiàng)式”,然后根據(jù)“和不含有x項(xiàng)”可以求得m的值,從而可以寫出此“特征多項(xiàng)式”.
解:(1)由表格可得:第3格的“特征多項(xiàng)式”為12x+9y,第4格的“特征多項(xiàng)式”為16x+16y,第n格的“特征多項(xiàng)式”為4nx+n2y,
故答案為:12x+9y,16x+16y,4nx+n2y;
(2)由(1)可得,第m格的“特征多項(xiàng)式”是4mx+m2y,
∴(4mx+m2y)+(24x+2y5)=4mx+m2y24x+2y5=(4m24)x+(m2+2)y5,
∵第m格的“特征多項(xiàng)式”與多項(xiàng)式24x+2y5的和不含有x項(xiàng),
∴4m24=0,解得m=6,
∴此“特征多項(xiàng)式”是24x+36y.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合我市創(chuàng)建省級(jí)文明城市,某校對(duì)八年級(jí)各班文明行為勸導(dǎo)志愿者人數(shù)進(jìn)行了統(tǒng)計(jì),各班統(tǒng)計(jì)人數(shù)有6名、5名、4名、3名、2名、1名共計(jì)六種情況,并制作如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求該年級(jí)平均每班有多少文明行為勸導(dǎo)志愿者?并將條形圖補(bǔ)充完整;
(2)該校決定本周開展主題實(shí)踐活動(dòng),從八年級(jí)只有2名文明行為勸導(dǎo)志愿者的班級(jí)中任選兩名,請(qǐng)用列表或畫樹狀圖的方法,求出所選文明行為勸導(dǎo)志愿者有兩名來自同一班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=5,∠C=30°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0),過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s,解答下列問題:
(1)求證:△BEF∽△DCB;
(2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動(dòng)時(shí),若△PQF的面積為0.6cm2,求t的值;
(3)如圖2過點(diǎn)Q作QG⊥AB,垂足為G,當(dāng)t為何值時(shí),四邊形EPQG為矩形,請(qǐng)說明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義運(yùn)算ab=a(1-b),下面給出了關(guān)于這種運(yùn)算的四個(gè)結(jié)論:
①2(-2)=6 ②ab=ba
③若a+b=0,則(aa)+(bb)=2ab ④若ab=0,則a=0.
其中正確結(jié)論的序號(hào)是 (填上你認(rèn)為所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)畫出將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°圖形.
(2)填空:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-1、3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù);
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為6?若存在,請(qǐng)求出x的值;若不存在,說明理由.
(3)點(diǎn)A、點(diǎn)B分別以2個(gè)單位長(zhǎng)度/分、1個(gè)單位長(zhǎng)度/分的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)P以6個(gè)單位長(zhǎng)度/分的速度從O點(diǎn)向左運(yùn)動(dòng).當(dāng)遇到A時(shí),點(diǎn)P立即以同樣的速度向右運(yùn)動(dòng),并不停地往返于點(diǎn)A與點(diǎn)B之間,求當(dāng)點(diǎn)A與點(diǎn)B重合時(shí),點(diǎn)P所經(jīng)過的總路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小兵、小英三人的家和學(xué)校在同一條東西走向的大街上,星期天班主任到這三位學(xué)生家進(jìn)行家訪,班主任從學(xué)校出發(fā)先向東走0.5千米到小明家,后又向東走1.5千米到小兵家,再向西走5千米到小英家,最后回到學(xué)校。
(1)以學(xué)校為原點(diǎn),畫出數(shù)軸并在數(shù)軸上分別表示出小明、小兵、小英三人家的位置。
(2)小明家距離小英家多遠(yuǎn)?
(3)這次家訪,班主任共走了多少千米路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是,連接交于點(diǎn)O,并分別與邊交于點(diǎn),連接AE,下列結(jié)論:;;;當(dāng)時(shí),,其中正確結(jié)論的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com