【題目】如圖,菱形ABCD的對角線AC=4cm,把它沿對角線AC方向平移1cm得到菱形EFGH,則圖中陰影部分圖形的面積與四邊形EMCN的面積之比為

【答案】
【解析】解:∵ME∥AD, ∴△MEC∽△DAC,
,
∵菱形ABCD的對角線AC=4cm,把它沿著對角線AC方向平移1cm得到菱形EFGH,
∴AE=1cm,EC=3cm,
= ,
= ,
∴圖中陰影部分圖形的面積與四邊形EMCN的面積之比為: =
所以答案是:
【考點精析】利用菱形的性質和平移的性質對題目進行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;①經過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經過平移后,對應點所連的線段平行(或在同一直線上)且相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O△ABC內一點,連結OBOC,并將AB、OBOC、AC的中點D、EF、G依次連結,得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點,OM=3,∠OBC∠OCB互余,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b圖象經過點(03)和(4,7).

①試求kb;

②畫出這個一次函數(shù)圖象;

③這個一次函數(shù)與x軸交點坐標是_____;

④當x_____時,y0;

⑤當x_____時,y0;

⑥當0y7時,x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在△ABC中,∠ABC=90°,AB=4,BC=3,若線段CD=2,且CD∥AB,則AD的長度等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且ADMND,BEMNE.

(1)當直線MN繞點C旋轉到圖1的位置時,求證:①△ADC≌△CEB;DE=AD+BE;

(2)當直線MN繞點C旋轉到圖2的位置時,求證:DE=AD﹣BE;

(3)當直線MN繞點C旋轉到圖3的位置時,試問DE、AD、BE具有怎樣的等量關系?請寫出這個等量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D,E,F為BC中點,BE與DF,DC分別交于點G,H,連接CG,∠ABE=∠CBE.

(1)求證:BH=AC;

(2)若BG=5,GE=4,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對角線BD中點的直線交AD、BC邊于F、E.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,寫出EF與BD的關系.
(3)若∠A=60°,AB=4,BC=6,四邊形BEDF是矩形,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,EAB上一點,過點EEF∥AD,與AC,DC分別交于點G,F(xiàn),HCG的中點,連接DE,EH,DH,F(xiàn)H.下列結論中結論正確的有(

①EG=DF;

②∠AEH+∠ADH=180°;

③△EHF≌△DHC;

,則SEDH=13SCFH .

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C(0,﹣3),A點的坐標為(﹣1,0).

(1)求二次函數(shù)的解析式;
(2)若點P是拋物線在第四象限上的一個動點,當四邊形ABPC的面積最大時,
求點P的坐標,并求出四邊形ABPC的最大面積;
(3)若Q為拋物線對稱軸上一動點,直接寫出使△QBC為直角三角形的點Q的
坐標.

查看答案和解析>>

同步練習冊答案