【題目】如圖所示,拋物線y=ax2+bx+c(a≠0)的頂點坐標為點A(﹣2,3),且拋物線y=ax2+bx+c與y軸交于點B(0,2).

(1)求該拋物線的解析式;
(2)是否在x軸上存在點P使△PAB為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點P是x軸上任意一點,則當(dāng)PA﹣PB最大時,求點P的坐標.

【答案】
(1)

解:∵拋物線的頂點坐標為A(﹣2,3),∴可設(shè)拋物線的解析式為y=a(x+2)2+3.

由題意得:a(0+2)2+3=2,解得:a=﹣

∴物線的解析式為y=﹣ (x+2)2+3,即y=﹣ x2﹣x+2.


(2)

解:設(shè)存在符合條件的點P,其坐標為(p,0),則

PA2=(﹣2﹣p)2+32,PB2=p2+22,AB2=(3﹣2)2+22=5

當(dāng)PA=PB時,(﹣2﹣p)2+32=p2+22,解得:p=﹣ ;

當(dāng)PA=AB時,(﹣2﹣p)2+32=5,方程無實數(shù)解;

當(dāng)PB=AB時,p2+22=5,解得p=±1.

∴x軸上存在符合條件的點P,其坐標為(﹣ ,0)或(﹣1,0)或(1,0).


(3)

解:∵PA﹣PB≤AB,

∴當(dāng)A、B、P三點共線時,可得PA﹣PB的最大值,這個最大值等于AB,此時點P是直線AB與x軸的交點.

設(shè)直線AB的解析式為y=kx+b,則:

,解得

∴直線AB的解析式為y=﹣ x+2,

當(dāng)y=﹣ x+2=0時,解得x=4.

∴當(dāng)PA﹣PB最大時,點P的坐標是(4,0).


【解析】(1)通過讀題可以看出拋物線y=ax2+bx+c(a≠0)的頂點坐標為點A(﹣2,3),且經(jīng)過B點,所以直接將拋物線的解析式設(shè)為頂點式,然后代入B點的坐標求解即可.(2)首先設(shè)出P點的坐標,根據(jù)坐標系兩點間的距離公式分別求出PA、PB、AB的長度(或表達式),然后分PA=PB、PA=AB、PB=AB三種情況列方程求解即可.(3)當(dāng)P、A、B三點不共線時,PA﹣PB<AB(三角形三邊關(guān)系定理),三點共線時,PA﹣PB=AB,綜合來看:PA﹣PB≤AB,所以當(dāng)PA﹣PB的值最大時,P、A、B三點共線,因此只需求出直線AB的解析式,該直線與x軸的交點即為符合條件的P點.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小,以及對等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿AB向B點運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,當(dāng)P運動到B點時,P、Q兩點同時停止運動.設(shè)P點運動的時間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場急需銨肥8噸,在該農(nóng)場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關(guān)系如圖所示.

(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);

(2)若農(nóng)場到B公司的路程是農(nóng)場到A公司路程的2倍,農(nóng)場到A公司的路程為m千米,設(shè)農(nóng)場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場建議總費用最低的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)開學(xué)初,小明到文具批發(fā)部一次性購買某種筆記本,該文具批發(fā)部規(guī)定:這種筆記本售價y(元/本)與購買數(shù)量x(本)之間的函數(shù)關(guān)系如圖所示

(1)圖中線段AB所表示的實際意義是 ;

(2)請直接寫出y與x之間的函數(shù)關(guān)系式;

(3)已知該文具批發(fā)部這種筆記本的進價是3元/本,若小明購買此種筆記本超過10本但不超過20本,那么小明購買多少本時,該文具批發(fā)部在這次買賣中所獲的利潤W(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,其中弧DE、弧EF、弧FG的圓心依次為點A、B、C.
(1)求點D沿三條弧運動到點G所經(jīng)過的路線長;
(2)判斷直線GB與DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在排成每行七天的日歷表中取下一個3×3的方塊(如圖所示).若所有日期數(shù)之和為189,n的值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則PEF和PGH的面積和等于.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BE,CD相交于點O,如果AB=AC,那么圖中全等的三角形有( 。

A. 2對 B. 3對 C. 4對 D. 5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小劉上午從家里出發(fā),騎車去一家超市購物,然后從這家超市返回家中.小劉離家的路程y(米)和所經(jīng)過的時間x(分)之間的函數(shù)圖象如圖所示,則下列說法不正確的是( 。

A. 小劉家與超市相距3000 B. 小劉去超市途中的速度是300/

C. 小劉在超市逗留了30分鐘 D. 小劉從超市返回家比從家里去超市的速度快

查看答案和解析>>

同步練習(xí)冊答案